Solve for n
n=-\frac{\sqrt{91}i}{13}\approx -0-0.733799386i
n=\frac{\sqrt{91}i}{13}\approx 0.733799386i
Share
Copied to clipboard
91n^{2}=-49
Subtract 49 from both sides. Anything subtracted from zero gives its negation.
n^{2}=\frac{-49}{91}
Divide both sides by 91.
n^{2}=-\frac{7}{13}
Reduce the fraction \frac{-49}{91} to lowest terms by extracting and canceling out 7.
n=\frac{\sqrt{91}i}{13} n=-\frac{\sqrt{91}i}{13}
The equation is now solved.
91n^{2}+49=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
n=\frac{0±\sqrt{0^{2}-4\times 91\times 49}}{2\times 91}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 91 for a, 0 for b, and 49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\times 91\times 49}}{2\times 91}
Square 0.
n=\frac{0±\sqrt{-364\times 49}}{2\times 91}
Multiply -4 times 91.
n=\frac{0±\sqrt{-17836}}{2\times 91}
Multiply -364 times 49.
n=\frac{0±14\sqrt{91}i}{2\times 91}
Take the square root of -17836.
n=\frac{0±14\sqrt{91}i}{182}
Multiply 2 times 91.
n=\frac{\sqrt{91}i}{13}
Now solve the equation n=\frac{0±14\sqrt{91}i}{182} when ± is plus.
n=-\frac{\sqrt{91}i}{13}
Now solve the equation n=\frac{0±14\sqrt{91}i}{182} when ± is minus.
n=\frac{\sqrt{91}i}{13} n=-\frac{\sqrt{91}i}{13}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}