Evaluate
-\frac{1456}{29}+\frac{1001}{29}i\approx -50.206896552+34.517241379i
Real Part
-\frac{1456}{29} = -50\frac{6}{29} = -50.206896551724135
Share
Copied to clipboard
91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{\left(-2-5i\right)\left(-2+5i\right)}
Multiply both numerator and denominator of \frac{3+2i}{-2-5i} by the complex conjugate of the denominator, -2+5i.
91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{\left(-2\right)^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{29}
By definition, i^{2} is -1. Calculate the denominator.
91\times \frac{3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5i^{2}}{29}
Multiply complex numbers 3+2i and -2+5i like you multiply binomials.
91\times \frac{3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5\left(-1\right)}{29}
By definition, i^{2} is -1.
91\times \frac{-6+15i-4i-10}{29}
Do the multiplications in 3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5\left(-1\right).
91\times \frac{-6-10+\left(15-4\right)i}{29}
Combine the real and imaginary parts in -6+15i-4i-10.
91\times \frac{-16+11i}{29}
Do the additions in -6-10+\left(15-4\right)i.
91\left(-\frac{16}{29}+\frac{11}{29}i\right)
Divide -16+11i by 29 to get -\frac{16}{29}+\frac{11}{29}i.
91\left(-\frac{16}{29}\right)+91\times \left(\frac{11}{29}i\right)
Multiply 91 times -\frac{16}{29}+\frac{11}{29}i.
-\frac{1456}{29}+\frac{1001}{29}i
Do the multiplications.
Re(91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{\left(-2-5i\right)\left(-2+5i\right)})
Multiply both numerator and denominator of \frac{3+2i}{-2-5i} by the complex conjugate of the denominator, -2+5i.
Re(91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{\left(-2\right)^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{29})
By definition, i^{2} is -1. Calculate the denominator.
Re(91\times \frac{3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5i^{2}}{29})
Multiply complex numbers 3+2i and -2+5i like you multiply binomials.
Re(91\times \frac{3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5\left(-1\right)}{29})
By definition, i^{2} is -1.
Re(91\times \frac{-6+15i-4i-10}{29})
Do the multiplications in 3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5\left(-1\right).
Re(91\times \frac{-6-10+\left(15-4\right)i}{29})
Combine the real and imaginary parts in -6+15i-4i-10.
Re(91\times \frac{-16+11i}{29})
Do the additions in -6-10+\left(15-4\right)i.
Re(91\left(-\frac{16}{29}+\frac{11}{29}i\right))
Divide -16+11i by 29 to get -\frac{16}{29}+\frac{11}{29}i.
Re(91\left(-\frac{16}{29}\right)+91\times \left(\frac{11}{29}i\right))
Multiply 91 times -\frac{16}{29}+\frac{11}{29}i.
Re(-\frac{1456}{29}+\frac{1001}{29}i)
Do the multiplications in 91\left(-\frac{16}{29}\right)+91\times \left(\frac{11}{29}i\right).
-\frac{1456}{29}
The real part of -\frac{1456}{29}+\frac{1001}{29}i is -\frac{1456}{29}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}