Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{\left(-2-5i\right)\left(-2+5i\right)}
Multiply both numerator and denominator of \frac{3+2i}{-2-5i} by the complex conjugate of the denominator, -2+5i.
91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{\left(-2\right)^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{29}
By definition, i^{2} is -1. Calculate the denominator.
91\times \frac{3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5i^{2}}{29}
Multiply complex numbers 3+2i and -2+5i like you multiply binomials.
91\times \frac{3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5\left(-1\right)}{29}
By definition, i^{2} is -1.
91\times \frac{-6+15i-4i-10}{29}
Do the multiplications in 3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5\left(-1\right).
91\times \frac{-6-10+\left(15-4\right)i}{29}
Combine the real and imaginary parts in -6+15i-4i-10.
91\times \frac{-16+11i}{29}
Do the additions in -6-10+\left(15-4\right)i.
91\left(-\frac{16}{29}+\frac{11}{29}i\right)
Divide -16+11i by 29 to get -\frac{16}{29}+\frac{11}{29}i.
91\left(-\frac{16}{29}\right)+91\times \left(\frac{11}{29}i\right)
Multiply 91 times -\frac{16}{29}+\frac{11}{29}i.
-\frac{1456}{29}+\frac{1001}{29}i
Do the multiplications.
Re(91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{\left(-2-5i\right)\left(-2+5i\right)})
Multiply both numerator and denominator of \frac{3+2i}{-2-5i} by the complex conjugate of the denominator, -2+5i.
Re(91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{\left(-2\right)^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{29})
By definition, i^{2} is -1. Calculate the denominator.
Re(91\times \frac{3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5i^{2}}{29})
Multiply complex numbers 3+2i and -2+5i like you multiply binomials.
Re(91\times \frac{3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5\left(-1\right)}{29})
By definition, i^{2} is -1.
Re(91\times \frac{-6+15i-4i-10}{29})
Do the multiplications in 3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5\left(-1\right).
Re(91\times \frac{-6-10+\left(15-4\right)i}{29})
Combine the real and imaginary parts in -6+15i-4i-10.
Re(91\times \frac{-16+11i}{29})
Do the additions in -6-10+\left(15-4\right)i.
Re(91\left(-\frac{16}{29}+\frac{11}{29}i\right))
Divide -16+11i by 29 to get -\frac{16}{29}+\frac{11}{29}i.
Re(91\left(-\frac{16}{29}\right)+91\times \left(\frac{11}{29}i\right))
Multiply 91 times -\frac{16}{29}+\frac{11}{29}i.
Re(-\frac{1456}{29}+\frac{1001}{29}i)
Do the multiplications in 91\left(-\frac{16}{29}\right)+91\times \left(\frac{11}{29}i\right).
-\frac{1456}{29}
The real part of -\frac{1456}{29}+\frac{1001}{29}i is -\frac{1456}{29}.