Solve for x
x=\frac{9\sqrt{5}}{20}+\frac{9}{4}\approx 3.25623059
x=-\frac{9\sqrt{5}}{20}+\frac{9}{4}\approx 1.24376941
Graph
Share
Copied to clipboard
-20x^{2}+90x-81=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-90±\sqrt{90^{2}-4\left(-20\right)\left(-81\right)}}{2\left(-20\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -20 for a, 90 for b, and -81 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-90±\sqrt{8100-4\left(-20\right)\left(-81\right)}}{2\left(-20\right)}
Square 90.
x=\frac{-90±\sqrt{8100+80\left(-81\right)}}{2\left(-20\right)}
Multiply -4 times -20.
x=\frac{-90±\sqrt{8100-6480}}{2\left(-20\right)}
Multiply 80 times -81.
x=\frac{-90±\sqrt{1620}}{2\left(-20\right)}
Add 8100 to -6480.
x=\frac{-90±18\sqrt{5}}{2\left(-20\right)}
Take the square root of 1620.
x=\frac{-90±18\sqrt{5}}{-40}
Multiply 2 times -20.
x=\frac{18\sqrt{5}-90}{-40}
Now solve the equation x=\frac{-90±18\sqrt{5}}{-40} when ± is plus. Add -90 to 18\sqrt{5}.
x=-\frac{9\sqrt{5}}{20}+\frac{9}{4}
Divide -90+18\sqrt{5} by -40.
x=\frac{-18\sqrt{5}-90}{-40}
Now solve the equation x=\frac{-90±18\sqrt{5}}{-40} when ± is minus. Subtract 18\sqrt{5} from -90.
x=\frac{9\sqrt{5}}{20}+\frac{9}{4}
Divide -90-18\sqrt{5} by -40.
x=-\frac{9\sqrt{5}}{20}+\frac{9}{4} x=\frac{9\sqrt{5}}{20}+\frac{9}{4}
The equation is now solved.
-20x^{2}+90x-81=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-20x^{2}+90x-81-\left(-81\right)=-\left(-81\right)
Add 81 to both sides of the equation.
-20x^{2}+90x=-\left(-81\right)
Subtracting -81 from itself leaves 0.
-20x^{2}+90x=81
Subtract -81 from 0.
\frac{-20x^{2}+90x}{-20}=\frac{81}{-20}
Divide both sides by -20.
x^{2}+\frac{90}{-20}x=\frac{81}{-20}
Dividing by -20 undoes the multiplication by -20.
x^{2}-\frac{9}{2}x=\frac{81}{-20}
Reduce the fraction \frac{90}{-20} to lowest terms by extracting and canceling out 10.
x^{2}-\frac{9}{2}x=-\frac{81}{20}
Divide 81 by -20.
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=-\frac{81}{20}+\left(-\frac{9}{4}\right)^{2}
Divide -\frac{9}{2}, the coefficient of the x term, by 2 to get -\frac{9}{4}. Then add the square of -\frac{9}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{2}x+\frac{81}{16}=-\frac{81}{20}+\frac{81}{16}
Square -\frac{9}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{81}{80}
Add -\frac{81}{20} to \frac{81}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{4}\right)^{2}=\frac{81}{80}
Factor x^{2}-\frac{9}{2}x+\frac{81}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{81}{80}}
Take the square root of both sides of the equation.
x-\frac{9}{4}=\frac{9\sqrt{5}}{20} x-\frac{9}{4}=-\frac{9\sqrt{5}}{20}
Simplify.
x=\frac{9\sqrt{5}}{20}+\frac{9}{4} x=-\frac{9\sqrt{5}}{20}+\frac{9}{4}
Add \frac{9}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}