Evaluate
\frac{902}{125}=7.216
Factor
\frac{2 \cdot 11 \cdot 41}{5 ^ {3}} = 7\frac{27}{125} = 7.216
Share
Copied to clipboard
\begin{array}{l}\phantom{125)}\phantom{1}\\125\overline{)902}\\\end{array}
Use the 1^{st} digit 9 from dividend 902
\begin{array}{l}\phantom{125)}0\phantom{2}\\125\overline{)902}\\\end{array}
Since 9 is less than 125, use the next digit 0 from dividend 902 and add 0 to the quotient
\begin{array}{l}\phantom{125)}0\phantom{3}\\125\overline{)902}\\\end{array}
Use the 2^{nd} digit 0 from dividend 902
\begin{array}{l}\phantom{125)}00\phantom{4}\\125\overline{)902}\\\end{array}
Since 90 is less than 125, use the next digit 2 from dividend 902 and add 0 to the quotient
\begin{array}{l}\phantom{125)}00\phantom{5}\\125\overline{)902}\\\end{array}
Use the 3^{rd} digit 2 from dividend 902
\begin{array}{l}\phantom{125)}007\phantom{6}\\125\overline{)902}\\\phantom{125)}\underline{\phantom{}875\phantom{}}\\\phantom{125)9}27\\\end{array}
Find closest multiple of 125 to 902. We see that 7 \times 125 = 875 is the nearest. Now subtract 875 from 902 to get reminder 27. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }27
Since 27 is less than 125, stop the division. The reminder is 27. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}