Solve for x (complex solution)
x=-\frac{i\times 4\sqrt{22470}}{5}+9\approx 9-119.919973316i
x=\frac{i\times 4\sqrt{22470}}{5}+9\approx 9+119.919973316i
Graph
Share
Copied to clipboard
90000=120-6.25\left(x^{2}-18x+81\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-9\right)^{2}.
90000=120-6.25x^{2}+112.5x-506.25
Use the distributive property to multiply -6.25 by x^{2}-18x+81.
90000=-386.25-6.25x^{2}+112.5x
Subtract 506.25 from 120 to get -386.25.
-386.25-6.25x^{2}+112.5x=90000
Swap sides so that all variable terms are on the left hand side.
-386.25-6.25x^{2}+112.5x-90000=0
Subtract 90000 from both sides.
-90386.25-6.25x^{2}+112.5x=0
Subtract 90000 from -386.25 to get -90386.25.
-6.25x^{2}+112.5x-90386.25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-112.5±\sqrt{112.5^{2}-4\left(-6.25\right)\left(-90386.25\right)}}{2\left(-6.25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6.25 for a, 112.5 for b, and -90386.25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-112.5±\sqrt{12656.25-4\left(-6.25\right)\left(-90386.25\right)}}{2\left(-6.25\right)}
Square 112.5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-112.5±\sqrt{12656.25+25\left(-90386.25\right)}}{2\left(-6.25\right)}
Multiply -4 times -6.25.
x=\frac{-112.5±\sqrt{\frac{50625-9038625}{4}}}{2\left(-6.25\right)}
Multiply 25 times -90386.25.
x=\frac{-112.5±\sqrt{-2247000}}{2\left(-6.25\right)}
Add 12656.25 to -2259656.25 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-112.5±10\sqrt{22470}i}{2\left(-6.25\right)}
Take the square root of -2247000.
x=\frac{-112.5±10\sqrt{22470}i}{-12.5}
Multiply 2 times -6.25.
x=\frac{-112.5+10\sqrt{22470}i}{-12.5}
Now solve the equation x=\frac{-112.5±10\sqrt{22470}i}{-12.5} when ± is plus. Add -112.5 to 10i\sqrt{22470}.
x=-\frac{4\sqrt{22470}i}{5}+9
Divide -112.5+10i\sqrt{22470} by -12.5 by multiplying -112.5+10i\sqrt{22470} by the reciprocal of -12.5.
x=\frac{-10\sqrt{22470}i-112.5}{-12.5}
Now solve the equation x=\frac{-112.5±10\sqrt{22470}i}{-12.5} when ± is minus. Subtract 10i\sqrt{22470} from -112.5.
x=\frac{4\sqrt{22470}i}{5}+9
Divide -112.5-10i\sqrt{22470} by -12.5 by multiplying -112.5-10i\sqrt{22470} by the reciprocal of -12.5.
x=-\frac{4\sqrt{22470}i}{5}+9 x=\frac{4\sqrt{22470}i}{5}+9
The equation is now solved.
90000=120-6.25\left(x^{2}-18x+81\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-9\right)^{2}.
90000=120-6.25x^{2}+112.5x-506.25
Use the distributive property to multiply -6.25 by x^{2}-18x+81.
90000=-386.25-6.25x^{2}+112.5x
Subtract 506.25 from 120 to get -386.25.
-386.25-6.25x^{2}+112.5x=90000
Swap sides so that all variable terms are on the left hand side.
-6.25x^{2}+112.5x=90000+386.25
Add 386.25 to both sides.
-6.25x^{2}+112.5x=90386.25
Add 90000 and 386.25 to get 90386.25.
\frac{-6.25x^{2}+112.5x}{-6.25}=\frac{90386.25}{-6.25}
Divide both sides of the equation by -6.25, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{112.5}{-6.25}x=\frac{90386.25}{-6.25}
Dividing by -6.25 undoes the multiplication by -6.25.
x^{2}-18x=\frac{90386.25}{-6.25}
Divide 112.5 by -6.25 by multiplying 112.5 by the reciprocal of -6.25.
x^{2}-18x=-14461.8
Divide 90386.25 by -6.25 by multiplying 90386.25 by the reciprocal of -6.25.
x^{2}-18x+\left(-9\right)^{2}=-14461.8+\left(-9\right)^{2}
Divide -18, the coefficient of the x term, by 2 to get -9. Then add the square of -9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-18x+81=-14461.8+81
Square -9.
x^{2}-18x+81=-14380.8
Add -14461.8 to 81.
\left(x-9\right)^{2}=-14380.8
Factor x^{2}-18x+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-9\right)^{2}}=\sqrt{-14380.8}
Take the square root of both sides of the equation.
x-9=\frac{4\sqrt{22470}i}{5} x-9=-\frac{4\sqrt{22470}i}{5}
Simplify.
x=\frac{4\sqrt{22470}i}{5}+9 x=-\frac{4\sqrt{22470}i}{5}+9
Add 9 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}