9000 \times ( 1 + \frac { x } { 2 } \% ) ^ { 2 } = 9548.1
Solve for x
x=6
x=-406
Graph
Share
Copied to clipboard
\left(1+\frac{\frac{x}{2}}{100}\right)^{2}=\frac{9548.1}{9000}
Divide both sides by 9000.
\left(1+\frac{\frac{x}{2}}{100}\right)^{2}=\frac{95481}{90000}
Expand \frac{9548.1}{9000} by multiplying both numerator and the denominator by 10.
\left(1+\frac{\frac{x}{2}}{100}\right)^{2}=\frac{10609}{10000}
Reduce the fraction \frac{95481}{90000} to lowest terms by extracting and canceling out 9.
1+2\times \frac{\frac{x}{2}}{100}+\left(\frac{\frac{x}{2}}{100}\right)^{2}=\frac{10609}{10000}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\frac{\frac{x}{2}}{100}\right)^{2}.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\left(\frac{x}{2}\right)^{2}}{100^{2}}=\frac{10609}{10000}
To raise \frac{\frac{x}{2}}{100} to a power, raise both numerator and denominator to the power and then divide.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{2^{2}}}{100^{2}}=\frac{10609}{10000}
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{2^{2}}}{10000}=\frac{10609}{10000}
Calculate 100 to the power of 2 and get 10000.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{4}}{10000}=\frac{10609}{10000}
Calculate 2 to the power of 2 and get 4.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{4}}{10000}-\frac{10609}{10000}=0
Subtract \frac{10609}{10000} from both sides.
-\frac{609}{10000}+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{4}}{10000}=0
Subtract \frac{10609}{10000} from 1 to get -\frac{609}{10000}.
-609+200\times \frac{x}{2}+\frac{x^{2}}{4}=0
Multiply both sides of the equation by 10000, the least common multiple of 10000,100.
-2436+400x+x^{2}=0
Multiply both sides of the equation by 4, the least common multiple of 2,4.
x^{2}+400x-2436=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=400 ab=-2436
To solve the equation, factor x^{2}+400x-2436 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,2436 -2,1218 -3,812 -4,609 -6,406 -7,348 -12,203 -14,174 -21,116 -28,87 -29,84 -42,58
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -2436.
-1+2436=2435 -2+1218=1216 -3+812=809 -4+609=605 -6+406=400 -7+348=341 -12+203=191 -14+174=160 -21+116=95 -28+87=59 -29+84=55 -42+58=16
Calculate the sum for each pair.
a=-6 b=406
The solution is the pair that gives sum 400.
\left(x-6\right)\left(x+406\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=6 x=-406
To find equation solutions, solve x-6=0 and x+406=0.
\left(1+\frac{\frac{x}{2}}{100}\right)^{2}=\frac{9548.1}{9000}
Divide both sides by 9000.
\left(1+\frac{\frac{x}{2}}{100}\right)^{2}=\frac{95481}{90000}
Expand \frac{9548.1}{9000} by multiplying both numerator and the denominator by 10.
\left(1+\frac{\frac{x}{2}}{100}\right)^{2}=\frac{10609}{10000}
Reduce the fraction \frac{95481}{90000} to lowest terms by extracting and canceling out 9.
1+2\times \frac{\frac{x}{2}}{100}+\left(\frac{\frac{x}{2}}{100}\right)^{2}=\frac{10609}{10000}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\frac{\frac{x}{2}}{100}\right)^{2}.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\left(\frac{x}{2}\right)^{2}}{100^{2}}=\frac{10609}{10000}
To raise \frac{\frac{x}{2}}{100} to a power, raise both numerator and denominator to the power and then divide.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{2^{2}}}{100^{2}}=\frac{10609}{10000}
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{2^{2}}}{10000}=\frac{10609}{10000}
Calculate 100 to the power of 2 and get 10000.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{4}}{10000}=\frac{10609}{10000}
Calculate 2 to the power of 2 and get 4.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{4}}{10000}-\frac{10609}{10000}=0
Subtract \frac{10609}{10000} from both sides.
-\frac{609}{10000}+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{4}}{10000}=0
Subtract \frac{10609}{10000} from 1 to get -\frac{609}{10000}.
-609+200\times \frac{x}{2}+\frac{x^{2}}{4}=0
Multiply both sides of the equation by 10000, the least common multiple of 10000,100.
-2436+400x+x^{2}=0
Multiply both sides of the equation by 4, the least common multiple of 2,4.
x^{2}+400x-2436=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=400 ab=1\left(-2436\right)=-2436
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-2436. To find a and b, set up a system to be solved.
-1,2436 -2,1218 -3,812 -4,609 -6,406 -7,348 -12,203 -14,174 -21,116 -28,87 -29,84 -42,58
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -2436.
-1+2436=2435 -2+1218=1216 -3+812=809 -4+609=605 -6+406=400 -7+348=341 -12+203=191 -14+174=160 -21+116=95 -28+87=59 -29+84=55 -42+58=16
Calculate the sum for each pair.
a=-6 b=406
The solution is the pair that gives sum 400.
\left(x^{2}-6x\right)+\left(406x-2436\right)
Rewrite x^{2}+400x-2436 as \left(x^{2}-6x\right)+\left(406x-2436\right).
x\left(x-6\right)+406\left(x-6\right)
Factor out x in the first and 406 in the second group.
\left(x-6\right)\left(x+406\right)
Factor out common term x-6 by using distributive property.
x=6 x=-406
To find equation solutions, solve x-6=0 and x+406=0.
\left(1+\frac{\frac{x}{2}}{100}\right)^{2}=\frac{9548.1}{9000}
Divide both sides by 9000.
\left(1+\frac{\frac{x}{2}}{100}\right)^{2}=\frac{95481}{90000}
Expand \frac{9548.1}{9000} by multiplying both numerator and the denominator by 10.
\left(1+\frac{\frac{x}{2}}{100}\right)^{2}=\frac{10609}{10000}
Reduce the fraction \frac{95481}{90000} to lowest terms by extracting and canceling out 9.
1+2\times \frac{\frac{x}{2}}{100}+\left(\frac{\frac{x}{2}}{100}\right)^{2}=\frac{10609}{10000}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\frac{\frac{x}{2}}{100}\right)^{2}.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\left(\frac{x}{2}\right)^{2}}{100^{2}}=\frac{10609}{10000}
To raise \frac{\frac{x}{2}}{100} to a power, raise both numerator and denominator to the power and then divide.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{2^{2}}}{100^{2}}=\frac{10609}{10000}
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{2^{2}}}{10000}=\frac{10609}{10000}
Calculate 100 to the power of 2 and get 10000.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{4}}{10000}=\frac{10609}{10000}
Calculate 2 to the power of 2 and get 4.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{4}}{10000}-\frac{10609}{10000}=0
Subtract \frac{10609}{10000} from both sides.
-\frac{609}{10000}+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{4}}{10000}=0
Subtract \frac{10609}{10000} from 1 to get -\frac{609}{10000}.
-609+200\times \frac{x}{2}+\frac{x^{2}}{4}=0
Multiply both sides of the equation by 10000, the least common multiple of 10000,100.
-2436+400x+x^{2}=0
Multiply both sides of the equation by 4, the least common multiple of 2,4.
x^{2}+400x-2436=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-400±\sqrt{400^{2}-4\left(-2436\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 400 for b, and -2436 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-400±\sqrt{160000-4\left(-2436\right)}}{2}
Square 400.
x=\frac{-400±\sqrt{160000+9744}}{2}
Multiply -4 times -2436.
x=\frac{-400±\sqrt{169744}}{2}
Add 160000 to 9744.
x=\frac{-400±412}{2}
Take the square root of 169744.
x=\frac{12}{2}
Now solve the equation x=\frac{-400±412}{2} when ± is plus. Add -400 to 412.
x=6
Divide 12 by 2.
x=-\frac{812}{2}
Now solve the equation x=\frac{-400±412}{2} when ± is minus. Subtract 412 from -400.
x=-406
Divide -812 by 2.
x=6 x=-406
The equation is now solved.
\left(1+\frac{\frac{x}{2}}{100}\right)^{2}=\frac{9548.1}{9000}
Divide both sides by 9000.
\left(1+\frac{\frac{x}{2}}{100}\right)^{2}=\frac{95481}{90000}
Expand \frac{9548.1}{9000} by multiplying both numerator and the denominator by 10.
\left(1+\frac{\frac{x}{2}}{100}\right)^{2}=\frac{10609}{10000}
Reduce the fraction \frac{95481}{90000} to lowest terms by extracting and canceling out 9.
1+2\times \frac{\frac{x}{2}}{100}+\left(\frac{\frac{x}{2}}{100}\right)^{2}=\frac{10609}{10000}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\frac{\frac{x}{2}}{100}\right)^{2}.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\left(\frac{x}{2}\right)^{2}}{100^{2}}=\frac{10609}{10000}
To raise \frac{\frac{x}{2}}{100} to a power, raise both numerator and denominator to the power and then divide.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{2^{2}}}{100^{2}}=\frac{10609}{10000}
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{2^{2}}}{10000}=\frac{10609}{10000}
Calculate 100 to the power of 2 and get 10000.
1+2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{4}}{10000}=\frac{10609}{10000}
Calculate 2 to the power of 2 and get 4.
2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{4}}{10000}=\frac{10609}{10000}-1
Subtract 1 from both sides.
2\times \frac{\frac{x}{2}}{100}+\frac{\frac{x^{2}}{4}}{10000}=\frac{609}{10000}
Subtract 1 from \frac{10609}{10000} to get \frac{609}{10000}.
200\times \frac{x}{2}+\frac{x^{2}}{4}=609
Multiply both sides of the equation by 10000, the least common multiple of 100,10000.
400x+x^{2}=2436
Multiply both sides of the equation by 4, the least common multiple of 2,4.
x^{2}+400x=2436
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+400x+200^{2}=2436+200^{2}
Divide 400, the coefficient of the x term, by 2 to get 200. Then add the square of 200 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+400x+40000=2436+40000
Square 200.
x^{2}+400x+40000=42436
Add 2436 to 40000.
\left(x+200\right)^{2}=42436
Factor x^{2}+400x+40000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+200\right)^{2}}=\sqrt{42436}
Take the square root of both sides of the equation.
x+200=206 x+200=-206
Simplify.
x=6 x=-406
Subtract 200 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}