Solve for x
x=\frac{1}{25}=0.04
x=\frac{1}{9}\approx 0.111111111
Graph
Share
Copied to clipboard
900x^{2}-136x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-136\right)±\sqrt{\left(-136\right)^{2}-4\times 900\times 4}}{2\times 900}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 900 for a, -136 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-136\right)±\sqrt{18496-4\times 900\times 4}}{2\times 900}
Square -136.
x=\frac{-\left(-136\right)±\sqrt{18496-3600\times 4}}{2\times 900}
Multiply -4 times 900.
x=\frac{-\left(-136\right)±\sqrt{18496-14400}}{2\times 900}
Multiply -3600 times 4.
x=\frac{-\left(-136\right)±\sqrt{4096}}{2\times 900}
Add 18496 to -14400.
x=\frac{-\left(-136\right)±64}{2\times 900}
Take the square root of 4096.
x=\frac{136±64}{2\times 900}
The opposite of -136 is 136.
x=\frac{136±64}{1800}
Multiply 2 times 900.
x=\frac{200}{1800}
Now solve the equation x=\frac{136±64}{1800} when ± is plus. Add 136 to 64.
x=\frac{1}{9}
Reduce the fraction \frac{200}{1800} to lowest terms by extracting and canceling out 200.
x=\frac{72}{1800}
Now solve the equation x=\frac{136±64}{1800} when ± is minus. Subtract 64 from 136.
x=\frac{1}{25}
Reduce the fraction \frac{72}{1800} to lowest terms by extracting and canceling out 72.
x=\frac{1}{9} x=\frac{1}{25}
The equation is now solved.
900x^{2}-136x+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
900x^{2}-136x+4-4=-4
Subtract 4 from both sides of the equation.
900x^{2}-136x=-4
Subtracting 4 from itself leaves 0.
\frac{900x^{2}-136x}{900}=-\frac{4}{900}
Divide both sides by 900.
x^{2}+\left(-\frac{136}{900}\right)x=-\frac{4}{900}
Dividing by 900 undoes the multiplication by 900.
x^{2}-\frac{34}{225}x=-\frac{4}{900}
Reduce the fraction \frac{-136}{900} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{34}{225}x=-\frac{1}{225}
Reduce the fraction \frac{-4}{900} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{34}{225}x+\left(-\frac{17}{225}\right)^{2}=-\frac{1}{225}+\left(-\frac{17}{225}\right)^{2}
Divide -\frac{34}{225}, the coefficient of the x term, by 2 to get -\frac{17}{225}. Then add the square of -\frac{17}{225} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{34}{225}x+\frac{289}{50625}=-\frac{1}{225}+\frac{289}{50625}
Square -\frac{17}{225} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{34}{225}x+\frac{289}{50625}=\frac{64}{50625}
Add -\frac{1}{225} to \frac{289}{50625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{17}{225}\right)^{2}=\frac{64}{50625}
Factor x^{2}-\frac{34}{225}x+\frac{289}{50625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{225}\right)^{2}}=\sqrt{\frac{64}{50625}}
Take the square root of both sides of the equation.
x-\frac{17}{225}=\frac{8}{225} x-\frac{17}{225}=-\frac{8}{225}
Simplify.
x=\frac{1}{9} x=\frac{1}{25}
Add \frac{17}{225} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}