Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

900x^{2}-136x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-136\right)±\sqrt{\left(-136\right)^{2}-4\times 900\times 4}}{2\times 900}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 900 for a, -136 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-136\right)±\sqrt{18496-4\times 900\times 4}}{2\times 900}
Square -136.
x=\frac{-\left(-136\right)±\sqrt{18496-3600\times 4}}{2\times 900}
Multiply -4 times 900.
x=\frac{-\left(-136\right)±\sqrt{18496-14400}}{2\times 900}
Multiply -3600 times 4.
x=\frac{-\left(-136\right)±\sqrt{4096}}{2\times 900}
Add 18496 to -14400.
x=\frac{-\left(-136\right)±64}{2\times 900}
Take the square root of 4096.
x=\frac{136±64}{2\times 900}
The opposite of -136 is 136.
x=\frac{136±64}{1800}
Multiply 2 times 900.
x=\frac{200}{1800}
Now solve the equation x=\frac{136±64}{1800} when ± is plus. Add 136 to 64.
x=\frac{1}{9}
Reduce the fraction \frac{200}{1800} to lowest terms by extracting and canceling out 200.
x=\frac{72}{1800}
Now solve the equation x=\frac{136±64}{1800} when ± is minus. Subtract 64 from 136.
x=\frac{1}{25}
Reduce the fraction \frac{72}{1800} to lowest terms by extracting and canceling out 72.
x=\frac{1}{9} x=\frac{1}{25}
The equation is now solved.
900x^{2}-136x+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
900x^{2}-136x+4-4=-4
Subtract 4 from both sides of the equation.
900x^{2}-136x=-4
Subtracting 4 from itself leaves 0.
\frac{900x^{2}-136x}{900}=-\frac{4}{900}
Divide both sides by 900.
x^{2}+\left(-\frac{136}{900}\right)x=-\frac{4}{900}
Dividing by 900 undoes the multiplication by 900.
x^{2}-\frac{34}{225}x=-\frac{4}{900}
Reduce the fraction \frac{-136}{900} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{34}{225}x=-\frac{1}{225}
Reduce the fraction \frac{-4}{900} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{34}{225}x+\left(-\frac{17}{225}\right)^{2}=-\frac{1}{225}+\left(-\frac{17}{225}\right)^{2}
Divide -\frac{34}{225}, the coefficient of the x term, by 2 to get -\frac{17}{225}. Then add the square of -\frac{17}{225} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{34}{225}x+\frac{289}{50625}=-\frac{1}{225}+\frac{289}{50625}
Square -\frac{17}{225} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{34}{225}x+\frac{289}{50625}=\frac{64}{50625}
Add -\frac{1}{225} to \frac{289}{50625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{17}{225}\right)^{2}=\frac{64}{50625}
Factor x^{2}-\frac{34}{225}x+\frac{289}{50625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{225}\right)^{2}}=\sqrt{\frac{64}{50625}}
Take the square root of both sides of the equation.
x-\frac{17}{225}=\frac{8}{225} x-\frac{17}{225}=-\frac{8}{225}
Simplify.
x=\frac{1}{9} x=\frac{1}{25}
Add \frac{17}{225} to both sides of the equation.