Evaluate
\frac{225}{8}=28.125
Factor
\frac{3 ^ {2} \cdot 5 ^ {2}}{2 ^ {3}} = 28\frac{1}{8} = 28.125
Share
Copied to clipboard
\begin{array}{l}\phantom{32)}\phantom{1}\\32\overline{)900}\\\end{array}
Use the 1^{st} digit 9 from dividend 900
\begin{array}{l}\phantom{32)}0\phantom{2}\\32\overline{)900}\\\end{array}
Since 9 is less than 32, use the next digit 0 from dividend 900 and add 0 to the quotient
\begin{array}{l}\phantom{32)}0\phantom{3}\\32\overline{)900}\\\end{array}
Use the 2^{nd} digit 0 from dividend 900
\begin{array}{l}\phantom{32)}02\phantom{4}\\32\overline{)900}\\\phantom{32)}\underline{\phantom{}64\phantom{9}}\\\phantom{32)}26\\\end{array}
Find closest multiple of 32 to 90. We see that 2 \times 32 = 64 is the nearest. Now subtract 64 from 90 to get reminder 26. Add 2 to quotient.
\begin{array}{l}\phantom{32)}02\phantom{5}\\32\overline{)900}\\\phantom{32)}\underline{\phantom{}64\phantom{9}}\\\phantom{32)}260\\\end{array}
Use the 3^{rd} digit 0 from dividend 900
\begin{array}{l}\phantom{32)}028\phantom{6}\\32\overline{)900}\\\phantom{32)}\underline{\phantom{}64\phantom{9}}\\\phantom{32)}260\\\phantom{32)}\underline{\phantom{}256\phantom{}}\\\phantom{32)99}4\\\end{array}
Find closest multiple of 32 to 260. We see that 8 \times 32 = 256 is the nearest. Now subtract 256 from 260 to get reminder 4. Add 8 to quotient.
\text{Quotient: }28 \text{Reminder: }4
Since 4 is less than 32, stop the division. The reminder is 4. The topmost line 028 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}