Evaluate
\frac{300}{263}\approx 1.140684411
Factor
\frac{2 ^ {2} \cdot 3 \cdot 5 ^ {2}}{263} = 1\frac{37}{263} = 1.1406844106463878
Share
Copied to clipboard
\begin{array}{l}\phantom{789)}\phantom{1}\\789\overline{)900}\\\end{array}
Use the 1^{st} digit 9 from dividend 900
\begin{array}{l}\phantom{789)}0\phantom{2}\\789\overline{)900}\\\end{array}
Since 9 is less than 789, use the next digit 0 from dividend 900 and add 0 to the quotient
\begin{array}{l}\phantom{789)}0\phantom{3}\\789\overline{)900}\\\end{array}
Use the 2^{nd} digit 0 from dividend 900
\begin{array}{l}\phantom{789)}00\phantom{4}\\789\overline{)900}\\\end{array}
Since 90 is less than 789, use the next digit 0 from dividend 900 and add 0 to the quotient
\begin{array}{l}\phantom{789)}00\phantom{5}\\789\overline{)900}\\\end{array}
Use the 3^{rd} digit 0 from dividend 900
\begin{array}{l}\phantom{789)}001\phantom{6}\\789\overline{)900}\\\phantom{789)}\underline{\phantom{}789\phantom{}}\\\phantom{789)}111\\\end{array}
Find closest multiple of 789 to 900. We see that 1 \times 789 = 789 is the nearest. Now subtract 789 from 900 to get reminder 111. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }111
Since 111 is less than 789, stop the division. The reminder is 111. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}