Evaluate
\frac{300}{13}\approx 23.076923077
Factor
\frac{2 ^ {2} \cdot 3 \cdot 5 ^ {2}}{13} = 23\frac{1}{13} = 23.076923076923077
Share
Copied to clipboard
\begin{array}{l}\phantom{39)}\phantom{1}\\39\overline{)900}\\\end{array}
Use the 1^{st} digit 9 from dividend 900
\begin{array}{l}\phantom{39)}0\phantom{2}\\39\overline{)900}\\\end{array}
Since 9 is less than 39, use the next digit 0 from dividend 900 and add 0 to the quotient
\begin{array}{l}\phantom{39)}0\phantom{3}\\39\overline{)900}\\\end{array}
Use the 2^{nd} digit 0 from dividend 900
\begin{array}{l}\phantom{39)}02\phantom{4}\\39\overline{)900}\\\phantom{39)}\underline{\phantom{}78\phantom{9}}\\\phantom{39)}12\\\end{array}
Find closest multiple of 39 to 90. We see that 2 \times 39 = 78 is the nearest. Now subtract 78 from 90 to get reminder 12. Add 2 to quotient.
\begin{array}{l}\phantom{39)}02\phantom{5}\\39\overline{)900}\\\phantom{39)}\underline{\phantom{}78\phantom{9}}\\\phantom{39)}120\\\end{array}
Use the 3^{rd} digit 0 from dividend 900
\begin{array}{l}\phantom{39)}023\phantom{6}\\39\overline{)900}\\\phantom{39)}\underline{\phantom{}78\phantom{9}}\\\phantom{39)}120\\\phantom{39)}\underline{\phantom{}117\phantom{}}\\\phantom{39)99}3\\\end{array}
Find closest multiple of 39 to 120. We see that 3 \times 39 = 117 is the nearest. Now subtract 117 from 120 to get reminder 3. Add 3 to quotient.
\text{Quotient: }23 \text{Reminder: }3
Since 3 is less than 39, stop the division. The reminder is 3. The topmost line 023 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}