Evaluate
\frac{20}{3}\approx 6.666666667
Factor
\frac{2 ^ {2} \cdot 5}{3} = 6\frac{2}{3} = 6.666666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{135)}\phantom{1}\\135\overline{)900}\\\end{array}
Use the 1^{st} digit 9 from dividend 900
\begin{array}{l}\phantom{135)}0\phantom{2}\\135\overline{)900}\\\end{array}
Since 9 is less than 135, use the next digit 0 from dividend 900 and add 0 to the quotient
\begin{array}{l}\phantom{135)}0\phantom{3}\\135\overline{)900}\\\end{array}
Use the 2^{nd} digit 0 from dividend 900
\begin{array}{l}\phantom{135)}00\phantom{4}\\135\overline{)900}\\\end{array}
Since 90 is less than 135, use the next digit 0 from dividend 900 and add 0 to the quotient
\begin{array}{l}\phantom{135)}00\phantom{5}\\135\overline{)900}\\\end{array}
Use the 3^{rd} digit 0 from dividend 900
\begin{array}{l}\phantom{135)}006\phantom{6}\\135\overline{)900}\\\phantom{135)}\underline{\phantom{}810\phantom{}}\\\phantom{135)9}90\\\end{array}
Find closest multiple of 135 to 900. We see that 6 \times 135 = 810 is the nearest. Now subtract 810 from 900 to get reminder 90. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }90
Since 90 is less than 135, stop the division. The reminder is 90. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}