Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(90x-810\right)\left(x-10\right)=20\left(x-10\right)
Use the distributive property to multiply 90 by x-9.
90x^{2}-1710x+8100=20\left(x-10\right)
Use the distributive property to multiply 90x-810 by x-10 and combine like terms.
90x^{2}-1710x+8100=20x-200
Use the distributive property to multiply 20 by x-10.
90x^{2}-1710x+8100-20x=-200
Subtract 20x from both sides.
90x^{2}-1730x+8100=-200
Combine -1710x and -20x to get -1730x.
90x^{2}-1730x+8100+200=0
Add 200 to both sides.
90x^{2}-1730x+8300=0
Add 8100 and 200 to get 8300.
x=\frac{-\left(-1730\right)±\sqrt{\left(-1730\right)^{2}-4\times 90\times 8300}}{2\times 90}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 90 for a, -1730 for b, and 8300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1730\right)±\sqrt{2992900-4\times 90\times 8300}}{2\times 90}
Square -1730.
x=\frac{-\left(-1730\right)±\sqrt{2992900-360\times 8300}}{2\times 90}
Multiply -4 times 90.
x=\frac{-\left(-1730\right)±\sqrt{2992900-2988000}}{2\times 90}
Multiply -360 times 8300.
x=\frac{-\left(-1730\right)±\sqrt{4900}}{2\times 90}
Add 2992900 to -2988000.
x=\frac{-\left(-1730\right)±70}{2\times 90}
Take the square root of 4900.
x=\frac{1730±70}{2\times 90}
The opposite of -1730 is 1730.
x=\frac{1730±70}{180}
Multiply 2 times 90.
x=\frac{1800}{180}
Now solve the equation x=\frac{1730±70}{180} when ± is plus. Add 1730 to 70.
x=10
Divide 1800 by 180.
x=\frac{1660}{180}
Now solve the equation x=\frac{1730±70}{180} when ± is minus. Subtract 70 from 1730.
x=\frac{83}{9}
Reduce the fraction \frac{1660}{180} to lowest terms by extracting and canceling out 20.
x=10 x=\frac{83}{9}
The equation is now solved.
\left(90x-810\right)\left(x-10\right)=20\left(x-10\right)
Use the distributive property to multiply 90 by x-9.
90x^{2}-1710x+8100=20\left(x-10\right)
Use the distributive property to multiply 90x-810 by x-10 and combine like terms.
90x^{2}-1710x+8100=20x-200
Use the distributive property to multiply 20 by x-10.
90x^{2}-1710x+8100-20x=-200
Subtract 20x from both sides.
90x^{2}-1730x+8100=-200
Combine -1710x and -20x to get -1730x.
90x^{2}-1730x=-200-8100
Subtract 8100 from both sides.
90x^{2}-1730x=-8300
Subtract 8100 from -200 to get -8300.
\frac{90x^{2}-1730x}{90}=-\frac{8300}{90}
Divide both sides by 90.
x^{2}+\left(-\frac{1730}{90}\right)x=-\frac{8300}{90}
Dividing by 90 undoes the multiplication by 90.
x^{2}-\frac{173}{9}x=-\frac{8300}{90}
Reduce the fraction \frac{-1730}{90} to lowest terms by extracting and canceling out 10.
x^{2}-\frac{173}{9}x=-\frac{830}{9}
Reduce the fraction \frac{-8300}{90} to lowest terms by extracting and canceling out 10.
x^{2}-\frac{173}{9}x+\left(-\frac{173}{18}\right)^{2}=-\frac{830}{9}+\left(-\frac{173}{18}\right)^{2}
Divide -\frac{173}{9}, the coefficient of the x term, by 2 to get -\frac{173}{18}. Then add the square of -\frac{173}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{173}{9}x+\frac{29929}{324}=-\frac{830}{9}+\frac{29929}{324}
Square -\frac{173}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{173}{9}x+\frac{29929}{324}=\frac{49}{324}
Add -\frac{830}{9} to \frac{29929}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{173}{18}\right)^{2}=\frac{49}{324}
Factor x^{2}-\frac{173}{9}x+\frac{29929}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{173}{18}\right)^{2}}=\sqrt{\frac{49}{324}}
Take the square root of both sides of the equation.
x-\frac{173}{18}=\frac{7}{18} x-\frac{173}{18}=-\frac{7}{18}
Simplify.
x=10 x=\frac{83}{9}
Add \frac{173}{18} to both sides of the equation.