Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

90x^{2}+8x-400=60
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
90x^{2}+8x-400-60=60-60
Subtract 60 from both sides of the equation.
90x^{2}+8x-400-60=0
Subtracting 60 from itself leaves 0.
90x^{2}+8x-460=0
Subtract 60 from -400.
x=\frac{-8±\sqrt{8^{2}-4\times 90\left(-460\right)}}{2\times 90}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 90 for a, 8 for b, and -460 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 90\left(-460\right)}}{2\times 90}
Square 8.
x=\frac{-8±\sqrt{64-360\left(-460\right)}}{2\times 90}
Multiply -4 times 90.
x=\frac{-8±\sqrt{64+165600}}{2\times 90}
Multiply -360 times -460.
x=\frac{-8±\sqrt{165664}}{2\times 90}
Add 64 to 165600.
x=\frac{-8±4\sqrt{10354}}{2\times 90}
Take the square root of 165664.
x=\frac{-8±4\sqrt{10354}}{180}
Multiply 2 times 90.
x=\frac{4\sqrt{10354}-8}{180}
Now solve the equation x=\frac{-8±4\sqrt{10354}}{180} when ± is plus. Add -8 to 4\sqrt{10354}.
x=\frac{\sqrt{10354}-2}{45}
Divide -8+4\sqrt{10354} by 180.
x=\frac{-4\sqrt{10354}-8}{180}
Now solve the equation x=\frac{-8±4\sqrt{10354}}{180} when ± is minus. Subtract 4\sqrt{10354} from -8.
x=\frac{-\sqrt{10354}-2}{45}
Divide -8-4\sqrt{10354} by 180.
x=\frac{\sqrt{10354}-2}{45} x=\frac{-\sqrt{10354}-2}{45}
The equation is now solved.
90x^{2}+8x-400=60
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
90x^{2}+8x-400-\left(-400\right)=60-\left(-400\right)
Add 400 to both sides of the equation.
90x^{2}+8x=60-\left(-400\right)
Subtracting -400 from itself leaves 0.
90x^{2}+8x=460
Subtract -400 from 60.
\frac{90x^{2}+8x}{90}=\frac{460}{90}
Divide both sides by 90.
x^{2}+\frac{8}{90}x=\frac{460}{90}
Dividing by 90 undoes the multiplication by 90.
x^{2}+\frac{4}{45}x=\frac{460}{90}
Reduce the fraction \frac{8}{90} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{4}{45}x=\frac{46}{9}
Reduce the fraction \frac{460}{90} to lowest terms by extracting and canceling out 10.
x^{2}+\frac{4}{45}x+\left(\frac{2}{45}\right)^{2}=\frac{46}{9}+\left(\frac{2}{45}\right)^{2}
Divide \frac{4}{45}, the coefficient of the x term, by 2 to get \frac{2}{45}. Then add the square of \frac{2}{45} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{45}x+\frac{4}{2025}=\frac{46}{9}+\frac{4}{2025}
Square \frac{2}{45} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{45}x+\frac{4}{2025}=\frac{10354}{2025}
Add \frac{46}{9} to \frac{4}{2025} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{45}\right)^{2}=\frac{10354}{2025}
Factor x^{2}+\frac{4}{45}x+\frac{4}{2025}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{45}\right)^{2}}=\sqrt{\frac{10354}{2025}}
Take the square root of both sides of the equation.
x+\frac{2}{45}=\frac{\sqrt{10354}}{45} x+\frac{2}{45}=-\frac{\sqrt{10354}}{45}
Simplify.
x=\frac{\sqrt{10354}-2}{45} x=\frac{-\sqrt{10354}-2}{45}
Subtract \frac{2}{45} from both sides of the equation.