Solve for x
x=30
Graph
Share
Copied to clipboard
90-x=\frac{2}{5}\times 180+\frac{2}{5}\left(-1\right)x
Use the distributive property to multiply \frac{2}{5} by 180-x.
90-x=\frac{2\times 180}{5}+\frac{2}{5}\left(-1\right)x
Express \frac{2}{5}\times 180 as a single fraction.
90-x=\frac{360}{5}+\frac{2}{5}\left(-1\right)x
Multiply 2 and 180 to get 360.
90-x=72+\frac{2}{5}\left(-1\right)x
Divide 360 by 5 to get 72.
90-x=72-\frac{2}{5}x
Multiply \frac{2}{5} and -1 to get -\frac{2}{5}.
90-x+\frac{2}{5}x=72
Add \frac{2}{5}x to both sides.
90-\frac{3}{5}x=72
Combine -x and \frac{2}{5}x to get -\frac{3}{5}x.
-\frac{3}{5}x=72-90
Subtract 90 from both sides.
-\frac{3}{5}x=-18
Subtract 90 from 72 to get -18.
x=-18\left(-\frac{5}{3}\right)
Multiply both sides by -\frac{5}{3}, the reciprocal of -\frac{3}{5}.
x=\frac{-18\left(-5\right)}{3}
Express -18\left(-\frac{5}{3}\right) as a single fraction.
x=\frac{90}{3}
Multiply -18 and -5 to get 90.
x=30
Divide 90 by 3 to get 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}