Solve for x
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
x=-\frac{2}{3}\approx -0.666666667
x=\frac{3}{5}=0.6
x = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
Graph
Share
Copied to clipboard
±\frac{7}{3},±\frac{14}{3},±7,±\frac{35}{3},±14,±21,±\frac{70}{3},±35,±42,±70,±105,±210,±\frac{7}{6},±\frac{7}{2},±\frac{35}{6},±\frac{21}{2},±\frac{35}{2},±\frac{105}{2},±\frac{7}{9},±\frac{14}{9},±\frac{35}{9},±\frac{70}{9},±\frac{7}{15},±\frac{14}{15},±\frac{7}{5},±\frac{14}{5},±\frac{21}{5},±\frac{42}{5},±\frac{7}{18},±\frac{35}{18},±\frac{1}{3},±\frac{2}{3},±1,±\frac{5}{3},±2,±3,±\frac{10}{3},±5,±6,±10,±15,±30,±\frac{7}{30},±\frac{7}{10},±\frac{21}{10},±\frac{1}{6},±\frac{1}{2},±\frac{5}{6},±\frac{3}{2},±\frac{5}{2},±\frac{15}{2},±\frac{7}{45},±\frac{14}{45},±\frac{1}{9},±\frac{2}{9},±\frac{5}{9},±\frac{10}{9},±\frac{7}{90},±\frac{1}{15},±\frac{2}{15},±\frac{1}{5},±\frac{2}{5},±\frac{3}{5},±\frac{6}{5},±\frac{1}{18},±\frac{5}{18},±\frac{1}{30},±\frac{1}{10},±\frac{3}{10},±\frac{1}{45},±\frac{2}{45},±\frac{1}{90}
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 210 and q divides the leading coefficient 90. List all candidates \frac{p}{q}.
x=\frac{3}{5}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
18x^{3}+9x^{2}-107x-70=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 90x^{4}-9x^{3}-562x^{2}-29x+210 by 5\left(x-\frac{3}{5}\right)=5x-3 to get 18x^{3}+9x^{2}-107x-70. Solve the equation where the result equals to 0.
±\frac{35}{9},±\frac{70}{9},±\frac{35}{3},±\frac{70}{3},±35,±70,±\frac{35}{18},±\frac{35}{6},±\frac{35}{2},±\frac{7}{9},±\frac{14}{9},±\frac{7}{3},±\frac{14}{3},±7,±14,±\frac{5}{9},±\frac{10}{9},±\frac{5}{3},±\frac{10}{3},±5,±10,±\frac{7}{18},±\frac{7}{6},±\frac{7}{2},±\frac{5}{18},±\frac{5}{6},±\frac{5}{2},±\frac{1}{9},±\frac{2}{9},±\frac{1}{3},±\frac{2}{3},±1,±2,±\frac{1}{18},±\frac{1}{6},±\frac{1}{2}
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -70 and q divides the leading coefficient 18. List all candidates \frac{p}{q}.
x=-\frac{2}{3}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
6x^{2}-x-35=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 18x^{3}+9x^{2}-107x-70 by 3\left(x+\frac{2}{3}\right)=3x+2 to get 6x^{2}-x-35. Solve the equation where the result equals to 0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 6\left(-35\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 6 for a, -1 for b, and -35 for c in the quadratic formula.
x=\frac{1±29}{12}
Do the calculations.
x=-\frac{7}{3} x=\frac{5}{2}
Solve the equation 6x^{2}-x-35=0 when ± is plus and when ± is minus.
x=\frac{3}{5} x=-\frac{2}{3} x=-\frac{7}{3} x=\frac{5}{2}
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}