Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

90x^{2}-90x+16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 90\times 16}}{2\times 90}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 90 for a, -90 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-90\right)±\sqrt{8100-4\times 90\times 16}}{2\times 90}
Square -90.
x=\frac{-\left(-90\right)±\sqrt{8100-360\times 16}}{2\times 90}
Multiply -4 times 90.
x=\frac{-\left(-90\right)±\sqrt{8100-5760}}{2\times 90}
Multiply -360 times 16.
x=\frac{-\left(-90\right)±\sqrt{2340}}{2\times 90}
Add 8100 to -5760.
x=\frac{-\left(-90\right)±6\sqrt{65}}{2\times 90}
Take the square root of 2340.
x=\frac{90±6\sqrt{65}}{2\times 90}
The opposite of -90 is 90.
x=\frac{90±6\sqrt{65}}{180}
Multiply 2 times 90.
x=\frac{6\sqrt{65}+90}{180}
Now solve the equation x=\frac{90±6\sqrt{65}}{180} when ± is plus. Add 90 to 6\sqrt{65}.
x=\frac{\sqrt{65}}{30}+\frac{1}{2}
Divide 90+6\sqrt{65} by 180.
x=\frac{90-6\sqrt{65}}{180}
Now solve the equation x=\frac{90±6\sqrt{65}}{180} when ± is minus. Subtract 6\sqrt{65} from 90.
x=-\frac{\sqrt{65}}{30}+\frac{1}{2}
Divide 90-6\sqrt{65} by 180.
x=\frac{\sqrt{65}}{30}+\frac{1}{2} x=-\frac{\sqrt{65}}{30}+\frac{1}{2}
The equation is now solved.
90x^{2}-90x+16=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
90x^{2}-90x+16-16=-16
Subtract 16 from both sides of the equation.
90x^{2}-90x=-16
Subtracting 16 from itself leaves 0.
\frac{90x^{2}-90x}{90}=-\frac{16}{90}
Divide both sides by 90.
x^{2}+\left(-\frac{90}{90}\right)x=-\frac{16}{90}
Dividing by 90 undoes the multiplication by 90.
x^{2}-x=-\frac{16}{90}
Divide -90 by 90.
x^{2}-x=-\frac{8}{45}
Reduce the fraction \frac{-16}{90} to lowest terms by extracting and canceling out 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{8}{45}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-\frac{8}{45}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{13}{180}
Add -\frac{8}{45} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=\frac{13}{180}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{13}{180}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{65}}{30} x-\frac{1}{2}=-\frac{\sqrt{65}}{30}
Simplify.
x=\frac{\sqrt{65}}{30}+\frac{1}{2} x=-\frac{\sqrt{65}}{30}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.