Solve for x
x=\frac{\sqrt{235}}{30}+\frac{19}{2}\approx 10.010990324
x=-\frac{\sqrt{235}}{30}+\frac{19}{2}\approx 8.989009676
Graph
Share
Copied to clipboard
\left(90x-900\right)\left(x-9\right)=1
Use the distributive property to multiply 90 by x-10.
90x^{2}-1710x+8100=1
Use the distributive property to multiply 90x-900 by x-9 and combine like terms.
90x^{2}-1710x+8100-1=0
Subtract 1 from both sides.
90x^{2}-1710x+8099=0
Subtract 1 from 8100 to get 8099.
x=\frac{-\left(-1710\right)±\sqrt{\left(-1710\right)^{2}-4\times 90\times 8099}}{2\times 90}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 90 for a, -1710 for b, and 8099 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1710\right)±\sqrt{2924100-4\times 90\times 8099}}{2\times 90}
Square -1710.
x=\frac{-\left(-1710\right)±\sqrt{2924100-360\times 8099}}{2\times 90}
Multiply -4 times 90.
x=\frac{-\left(-1710\right)±\sqrt{2924100-2915640}}{2\times 90}
Multiply -360 times 8099.
x=\frac{-\left(-1710\right)±\sqrt{8460}}{2\times 90}
Add 2924100 to -2915640.
x=\frac{-\left(-1710\right)±6\sqrt{235}}{2\times 90}
Take the square root of 8460.
x=\frac{1710±6\sqrt{235}}{2\times 90}
The opposite of -1710 is 1710.
x=\frac{1710±6\sqrt{235}}{180}
Multiply 2 times 90.
x=\frac{6\sqrt{235}+1710}{180}
Now solve the equation x=\frac{1710±6\sqrt{235}}{180} when ± is plus. Add 1710 to 6\sqrt{235}.
x=\frac{\sqrt{235}}{30}+\frac{19}{2}
Divide 1710+6\sqrt{235} by 180.
x=\frac{1710-6\sqrt{235}}{180}
Now solve the equation x=\frac{1710±6\sqrt{235}}{180} when ± is minus. Subtract 6\sqrt{235} from 1710.
x=-\frac{\sqrt{235}}{30}+\frac{19}{2}
Divide 1710-6\sqrt{235} by 180.
x=\frac{\sqrt{235}}{30}+\frac{19}{2} x=-\frac{\sqrt{235}}{30}+\frac{19}{2}
The equation is now solved.
\left(90x-900\right)\left(x-9\right)=1
Use the distributive property to multiply 90 by x-10.
90x^{2}-1710x+8100=1
Use the distributive property to multiply 90x-900 by x-9 and combine like terms.
90x^{2}-1710x=1-8100
Subtract 8100 from both sides.
90x^{2}-1710x=-8099
Subtract 8100 from 1 to get -8099.
\frac{90x^{2}-1710x}{90}=-\frac{8099}{90}
Divide both sides by 90.
x^{2}+\left(-\frac{1710}{90}\right)x=-\frac{8099}{90}
Dividing by 90 undoes the multiplication by 90.
x^{2}-19x=-\frac{8099}{90}
Divide -1710 by 90.
x^{2}-19x+\left(-\frac{19}{2}\right)^{2}=-\frac{8099}{90}+\left(-\frac{19}{2}\right)^{2}
Divide -19, the coefficient of the x term, by 2 to get -\frac{19}{2}. Then add the square of -\frac{19}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-19x+\frac{361}{4}=-\frac{8099}{90}+\frac{361}{4}
Square -\frac{19}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-19x+\frac{361}{4}=\frac{47}{180}
Add -\frac{8099}{90} to \frac{361}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{19}{2}\right)^{2}=\frac{47}{180}
Factor x^{2}-19x+\frac{361}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{2}\right)^{2}}=\sqrt{\frac{47}{180}}
Take the square root of both sides of the equation.
x-\frac{19}{2}=\frac{\sqrt{235}}{30} x-\frac{19}{2}=-\frac{\sqrt{235}}{30}
Simplify.
x=\frac{\sqrt{235}}{30}+\frac{19}{2} x=-\frac{\sqrt{235}}{30}+\frac{19}{2}
Add \frac{19}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}