Evaluate
\frac{486}{5}=97.2
Factor
\frac{2 \cdot 3 ^ {5}}{5} = 97\frac{1}{5} = 97.2
Share
Copied to clipboard
90\times \frac{39}{50}+30\times \frac{90}{100}
Reduce the fraction \frac{78}{100} to lowest terms by extracting and canceling out 2.
\frac{90\times 39}{50}+30\times \frac{90}{100}
Express 90\times \frac{39}{50} as a single fraction.
\frac{3510}{50}+30\times \frac{90}{100}
Multiply 90 and 39 to get 3510.
\frac{351}{5}+30\times \frac{90}{100}
Reduce the fraction \frac{3510}{50} to lowest terms by extracting and canceling out 10.
\frac{351}{5}+30\times \frac{9}{10}
Reduce the fraction \frac{90}{100} to lowest terms by extracting and canceling out 10.
\frac{351}{5}+\frac{30\times 9}{10}
Express 30\times \frac{9}{10} as a single fraction.
\frac{351}{5}+\frac{270}{10}
Multiply 30 and 9 to get 270.
\frac{351}{5}+27
Divide 270 by 10 to get 27.
\frac{351}{5}+\frac{135}{5}
Convert 27 to fraction \frac{135}{5}.
\frac{351+135}{5}
Since \frac{351}{5} and \frac{135}{5} have the same denominator, add them by adding their numerators.
\frac{486}{5}
Add 351 and 135 to get 486.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}