Evaluate
\frac{30}{29}\approx 1.034482759
Factor
\frac{2 \cdot 3 \cdot 5}{29} = 1\frac{1}{29} = 1.0344827586206897
Share
Copied to clipboard
\begin{array}{l}\phantom{87)}\phantom{1}\\87\overline{)90}\\\end{array}
Use the 1^{st} digit 9 from dividend 90
\begin{array}{l}\phantom{87)}0\phantom{2}\\87\overline{)90}\\\end{array}
Since 9 is less than 87, use the next digit 0 from dividend 90 and add 0 to the quotient
\begin{array}{l}\phantom{87)}0\phantom{3}\\87\overline{)90}\\\end{array}
Use the 2^{nd} digit 0 from dividend 90
\begin{array}{l}\phantom{87)}01\phantom{4}\\87\overline{)90}\\\phantom{87)}\underline{\phantom{}87\phantom{}}\\\phantom{87)9}3\\\end{array}
Find closest multiple of 87 to 90. We see that 1 \times 87 = 87 is the nearest. Now subtract 87 from 90 to get reminder 3. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }3
Since 3 is less than 87, stop the division. The reminder is 3. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}