Evaluate
\frac{18}{17}\approx 1.058823529
Factor
\frac{2 \cdot 3 ^ {2}}{17} = 1\frac{1}{17} = 1.0588235294117647
Share
Copied to clipboard
\begin{array}{l}\phantom{85)}\phantom{1}\\85\overline{)90}\\\end{array}
Use the 1^{st} digit 9 from dividend 90
\begin{array}{l}\phantom{85)}0\phantom{2}\\85\overline{)90}\\\end{array}
Since 9 is less than 85, use the next digit 0 from dividend 90 and add 0 to the quotient
\begin{array}{l}\phantom{85)}0\phantom{3}\\85\overline{)90}\\\end{array}
Use the 2^{nd} digit 0 from dividend 90
\begin{array}{l}\phantom{85)}01\phantom{4}\\85\overline{)90}\\\phantom{85)}\underline{\phantom{}85\phantom{}}\\\phantom{85)9}5\\\end{array}
Find closest multiple of 85 to 90. We see that 1 \times 85 = 85 is the nearest. Now subtract 85 from 90 to get reminder 5. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }5
Since 5 is less than 85, stop the division. The reminder is 5. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}