Solve for x
x=45
Graph
Share
Copied to clipboard
90-x=\frac{2}{3}\times 180+\frac{2}{3}\left(-1\right)x-45
Use the distributive property to multiply \frac{2}{3} by 180-x.
90-x=\frac{2\times 180}{3}+\frac{2}{3}\left(-1\right)x-45
Express \frac{2}{3}\times 180 as a single fraction.
90-x=\frac{360}{3}+\frac{2}{3}\left(-1\right)x-45
Multiply 2 and 180 to get 360.
90-x=120+\frac{2}{3}\left(-1\right)x-45
Divide 360 by 3 to get 120.
90-x=120-\frac{2}{3}x-45
Multiply \frac{2}{3} and -1 to get -\frac{2}{3}.
90-x=75-\frac{2}{3}x
Subtract 45 from 120 to get 75.
90-x+\frac{2}{3}x=75
Add \frac{2}{3}x to both sides.
90-\frac{1}{3}x=75
Combine -x and \frac{2}{3}x to get -\frac{1}{3}x.
-\frac{1}{3}x=75-90
Subtract 90 from both sides.
-\frac{1}{3}x=-15
Subtract 90 from 75 to get -15.
x=-15\left(-3\right)
Multiply both sides by -3, the reciprocal of -\frac{1}{3}.
x=45
Multiply -15 and -3 to get 45.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}