Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

\frac{9.8}{0.25}=\frac{v^{2}}{1}
Divide both sides by 0.25.
\frac{980}{25}=\frac{v^{2}}{1}
Expand \frac{9.8}{0.25} by multiplying both numerator and the denominator by 100.
\frac{196}{5}=\frac{v^{2}}{1}
Reduce the fraction \frac{980}{25} to lowest terms by extracting and canceling out 5.
\frac{196}{5}\times 1=v^{2}
Multiply both sides by 1.
\frac{196}{5}=v^{2}
Multiply \frac{196}{5} and 1 to get \frac{196}{5}.
v^{2}=\frac{196}{5}
Swap sides so that all variable terms are on the left hand side.
v=\frac{14\sqrt{5}}{5} v=-\frac{14\sqrt{5}}{5}
Take the square root of both sides of the equation.
\frac{9.8}{0.25}=\frac{v^{2}}{1}
Divide both sides by 0.25.
\frac{980}{25}=\frac{v^{2}}{1}
Expand \frac{9.8}{0.25} by multiplying both numerator and the denominator by 100.
\frac{196}{5}=\frac{v^{2}}{1}
Reduce the fraction \frac{980}{25} to lowest terms by extracting and canceling out 5.
\frac{196}{5}\times 1=v^{2}
Multiply both sides by 1.
\frac{196}{5}=v^{2}
Multiply \frac{196}{5} and 1 to get \frac{196}{5}.
v^{2}=\frac{196}{5}
Swap sides so that all variable terms are on the left hand side.
v^{2}-\frac{196}{5}=0
Subtract \frac{196}{5} from both sides.
v=\frac{0±\sqrt{0^{2}-4\left(-\frac{196}{5}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{196}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{0±\sqrt{-4\left(-\frac{196}{5}\right)}}{2}
Square 0.
v=\frac{0±\sqrt{\frac{784}{5}}}{2}
Multiply -4 times -\frac{196}{5}.
v=\frac{0±\frac{28\sqrt{5}}{5}}{2}
Take the square root of \frac{784}{5}.
v=\frac{14\sqrt{5}}{5}
Now solve the equation v=\frac{0±\frac{28\sqrt{5}}{5}}{2} when ± is plus.
v=-\frac{14\sqrt{5}}{5}
Now solve the equation v=\frac{0±\frac{28\sqrt{5}}{5}}{2} when ± is minus.
v=\frac{14\sqrt{5}}{5} v=-\frac{14\sqrt{5}}{5}
The equation is now solved.