Solve for y
y=0.5
Graph
Share
Copied to clipboard
9.6-9y-6=1.2\left(2y-3\right)+3y
Use the distributive property to multiply -2 by 4.5y+3.
3.6-9y=1.2\left(2y-3\right)+3y
Subtract 6 from 9.6 to get 3.6.
3.6-9y=2.4y-3.6+3y
Use the distributive property to multiply 1.2 by 2y-3.
3.6-9y=5.4y-3.6
Combine 2.4y and 3y to get 5.4y.
3.6-9y-5.4y=-3.6
Subtract 5.4y from both sides.
3.6-14.4y=-3.6
Combine -9y and -5.4y to get -14.4y.
-14.4y=-3.6-3.6
Subtract 3.6 from both sides.
-14.4y=-7.2
Subtract 3.6 from -3.6 to get -7.2.
y=\frac{-7.2}{-14.4}
Divide both sides by -14.4.
y=\frac{-72}{-144}
Expand \frac{-7.2}{-14.4} by multiplying both numerator and the denominator by 10.
y=\frac{1}{2}
Reduce the fraction \frac{-72}{-144} to lowest terms by extracting and canceling out -72.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}