Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

537.6+180.88=33v^{2}
Multiply both sides of the equation by 56.
718.48=33v^{2}
Add 537.6 and 180.88 to get 718.48.
33v^{2}=718.48
Swap sides so that all variable terms are on the left hand side.
v^{2}=\frac{718.48}{33}
Divide both sides by 33.
v^{2}=\frac{71848}{3300}
Expand \frac{718.48}{33} by multiplying both numerator and the denominator by 100.
v^{2}=\frac{17962}{825}
Reduce the fraction \frac{71848}{3300} to lowest terms by extracting and canceling out 4.
v=\frac{\sqrt{592746}}{165} v=-\frac{\sqrt{592746}}{165}
Take the square root of both sides of the equation.
537.6+180.88=33v^{2}
Multiply both sides of the equation by 56.
718.48=33v^{2}
Add 537.6 and 180.88 to get 718.48.
33v^{2}=718.48
Swap sides so that all variable terms are on the left hand side.
33v^{2}-718.48=0
Subtract 718.48 from both sides.
v=\frac{0±\sqrt{0^{2}-4\times 33\left(-718.48\right)}}{2\times 33}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 33 for a, 0 for b, and -718.48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{0±\sqrt{-4\times 33\left(-718.48\right)}}{2\times 33}
Square 0.
v=\frac{0±\sqrt{-132\left(-718.48\right)}}{2\times 33}
Multiply -4 times 33.
v=\frac{0±\sqrt{94839.36}}{2\times 33}
Multiply -132 times -718.48.
v=\frac{0±\frac{2\sqrt{592746}}{5}}{2\times 33}
Take the square root of 94839.36.
v=\frac{0±\frac{2\sqrt{592746}}{5}}{66}
Multiply 2 times 33.
v=\frac{\sqrt{592746}}{165}
Now solve the equation v=\frac{0±\frac{2\sqrt{592746}}{5}}{66} when ± is plus.
v=-\frac{\sqrt{592746}}{165}
Now solve the equation v=\frac{0±\frac{2\sqrt{592746}}{5}}{66} when ± is minus.
v=\frac{\sqrt{592746}}{165} v=-\frac{\sqrt{592746}}{165}
The equation is now solved.