Solve for x (complex solution)
x=\frac{1026+i\times 2\sqrt{16990581}}{4601}\approx 0.222995001+1.791768418i
x=\frac{-i\times 2\sqrt{16990581}+1026}{4601}\approx 0.222995001-1.791768418i
Graph
Share
Copied to clipboard
9.202x^{2}-4.104x+30=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4.104\right)±\sqrt{\left(-4.104\right)^{2}-4\times 9.202\times 30}}{2\times 9.202}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9.202 for a, -4.104 for b, and 30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4.104\right)±\sqrt{16.842816-4\times 9.202\times 30}}{2\times 9.202}
Square -4.104 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-4.104\right)±\sqrt{16.842816-36.808\times 30}}{2\times 9.202}
Multiply -4 times 9.202.
x=\frac{-\left(-4.104\right)±\sqrt{16.842816-1104.24}}{2\times 9.202}
Multiply -36.808 times 30.
x=\frac{-\left(-4.104\right)±\sqrt{-1087.397184}}{2\times 9.202}
Add 16.842816 to -1104.24 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-4.104\right)±\frac{\sqrt{16990581}i}{125}}{2\times 9.202}
Take the square root of -1087.397184.
x=\frac{4.104±\frac{\sqrt{16990581}i}{125}}{2\times 9.202}
The opposite of -4.104 is 4.104.
x=\frac{4.104±\frac{\sqrt{16990581}i}{125}}{18.404}
Multiply 2 times 9.202.
x=\frac{513+\sqrt{16990581}i}{18.404\times 125}
Now solve the equation x=\frac{4.104±\frac{\sqrt{16990581}i}{125}}{18.404} when ± is plus. Add 4.104 to \frac{i\sqrt{16990581}}{125}.
x=\frac{1026+2\sqrt{16990581}i}{4601}
Divide \frac{513+i\sqrt{16990581}}{125} by 18.404 by multiplying \frac{513+i\sqrt{16990581}}{125} by the reciprocal of 18.404.
x=\frac{-\sqrt{16990581}i+513}{18.404\times 125}
Now solve the equation x=\frac{4.104±\frac{\sqrt{16990581}i}{125}}{18.404} when ± is minus. Subtract \frac{i\sqrt{16990581}}{125} from 4.104.
x=\frac{-2\sqrt{16990581}i+1026}{4601}
Divide \frac{513-i\sqrt{16990581}}{125} by 18.404 by multiplying \frac{513-i\sqrt{16990581}}{125} by the reciprocal of 18.404.
x=\frac{1026+2\sqrt{16990581}i}{4601} x=\frac{-2\sqrt{16990581}i+1026}{4601}
The equation is now solved.
9.202x^{2}-4.104x+30=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9.202x^{2}-4.104x+30-30=-30
Subtract 30 from both sides of the equation.
9.202x^{2}-4.104x=-30
Subtracting 30 from itself leaves 0.
\frac{9.202x^{2}-4.104x}{9.202}=-\frac{30}{9.202}
Divide both sides of the equation by 9.202, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{4.104}{9.202}\right)x=-\frac{30}{9.202}
Dividing by 9.202 undoes the multiplication by 9.202.
x^{2}-\frac{2052}{4601}x=-\frac{30}{9.202}
Divide -4.104 by 9.202 by multiplying -4.104 by the reciprocal of 9.202.
x^{2}-\frac{2052}{4601}x=-\frac{15000}{4601}
Divide -30 by 9.202 by multiplying -30 by the reciprocal of 9.202.
x^{2}-\frac{2052}{4601}x+\left(-\frac{1026}{4601}\right)^{2}=-\frac{15000}{4601}+\left(-\frac{1026}{4601}\right)^{2}
Divide -\frac{2052}{4601}, the coefficient of the x term, by 2 to get -\frac{1026}{4601}. Then add the square of -\frac{1026}{4601} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2052}{4601}x+\frac{1052676}{21169201}=-\frac{15000}{4601}+\frac{1052676}{21169201}
Square -\frac{1026}{4601} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2052}{4601}x+\frac{1052676}{21169201}=-\frac{67962324}{21169201}
Add -\frac{15000}{4601} to \frac{1052676}{21169201} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1026}{4601}\right)^{2}=-\frac{67962324}{21169201}
Factor x^{2}-\frac{2052}{4601}x+\frac{1052676}{21169201}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1026}{4601}\right)^{2}}=\sqrt{-\frac{67962324}{21169201}}
Take the square root of both sides of the equation.
x-\frac{1026}{4601}=\frac{2\sqrt{16990581}i}{4601} x-\frac{1026}{4601}=-\frac{2\sqrt{16990581}i}{4601}
Simplify.
x=\frac{1026+2\sqrt{16990581}i}{4601} x=\frac{-2\sqrt{16990581}i+1026}{4601}
Add \frac{1026}{4601} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}