Solve for x (complex solution)
x=\frac{i\sqrt{5587}}{10}+4\approx 4+7.474623736i
x=-\frac{i\sqrt{5587}}{10}+4\approx 4-7.474623736i
Graph
Share
Copied to clipboard
81+x^{2}-8x=9.13
Swap sides so that all variable terms are on the left hand side.
81+x^{2}-8x-9.13=0
Subtract 9.13 from both sides.
71.87+x^{2}-8x=0
Subtract 9.13 from 81 to get 71.87.
x^{2}-8x+71.87=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 71.87}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and 71.87 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 71.87}}{2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-287.48}}{2}
Multiply -4 times 71.87.
x=\frac{-\left(-8\right)±\sqrt{-223.48}}{2}
Add 64 to -287.48.
x=\frac{-\left(-8\right)±\frac{\sqrt{5587}i}{5}}{2}
Take the square root of -223.48.
x=\frac{8±\frac{\sqrt{5587}i}{5}}{2}
The opposite of -8 is 8.
x=\frac{\frac{\sqrt{5587}i}{5}+8}{2}
Now solve the equation x=\frac{8±\frac{\sqrt{5587}i}{5}}{2} when ± is plus. Add 8 to \frac{i\sqrt{5587}}{5}.
x=\frac{\sqrt{5587}i}{10}+4
Divide 8+\frac{i\sqrt{5587}}{5} by 2.
x=\frac{-\frac{\sqrt{5587}i}{5}+8}{2}
Now solve the equation x=\frac{8±\frac{\sqrt{5587}i}{5}}{2} when ± is minus. Subtract \frac{i\sqrt{5587}}{5} from 8.
x=-\frac{\sqrt{5587}i}{10}+4
Divide 8-\frac{i\sqrt{5587}}{5} by 2.
x=\frac{\sqrt{5587}i}{10}+4 x=-\frac{\sqrt{5587}i}{10}+4
The equation is now solved.
81+x^{2}-8x=9.13
Swap sides so that all variable terms are on the left hand side.
x^{2}-8x=9.13-81
Subtract 81 from both sides.
x^{2}-8x=-71.87
Subtract 81 from 9.13 to get -71.87.
x^{2}-8x=-\frac{7187}{100}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-8x+\left(-4\right)^{2}=-\frac{7187}{100}+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-\frac{7187}{100}+16
Square -4.
x^{2}-8x+16=-\frac{5587}{100}
Add -\frac{7187}{100} to 16.
\left(x-4\right)^{2}=-\frac{5587}{100}
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{-\frac{5587}{100}}
Take the square root of both sides of the equation.
x-4=\frac{\sqrt{5587}i}{10} x-4=-\frac{\sqrt{5587}i}{10}
Simplify.
x=\frac{\sqrt{5587}i}{10}+4 x=-\frac{\sqrt{5587}i}{10}+4
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}