Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x^{2}-22x+9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 12\times 9}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-22\right)±\sqrt{484-4\times 12\times 9}}{2\times 12}
Square -22.
x=\frac{-\left(-22\right)±\sqrt{484-48\times 9}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-22\right)±\sqrt{484-432}}{2\times 12}
Multiply -48 times 9.
x=\frac{-\left(-22\right)±\sqrt{52}}{2\times 12}
Add 484 to -432.
x=\frac{-\left(-22\right)±2\sqrt{13}}{2\times 12}
Take the square root of 52.
x=\frac{22±2\sqrt{13}}{2\times 12}
The opposite of -22 is 22.
x=\frac{22±2\sqrt{13}}{24}
Multiply 2 times 12.
x=\frac{2\sqrt{13}+22}{24}
Now solve the equation x=\frac{22±2\sqrt{13}}{24} when ± is plus. Add 22 to 2\sqrt{13}.
x=\frac{\sqrt{13}+11}{12}
Divide 22+2\sqrt{13} by 24.
x=\frac{22-2\sqrt{13}}{24}
Now solve the equation x=\frac{22±2\sqrt{13}}{24} when ± is minus. Subtract 2\sqrt{13} from 22.
x=\frac{11-\sqrt{13}}{12}
Divide 22-2\sqrt{13} by 24.
12x^{2}-22x+9=12\left(x-\frac{\sqrt{13}+11}{12}\right)\left(x-\frac{11-\sqrt{13}}{12}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{11+\sqrt{13}}{12} for x_{1} and \frac{11-\sqrt{13}}{12} for x_{2}.