Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

270-9x=x^{2}
Use the distributive property to multiply 9 by 30-x.
270-9x-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}-9x+270=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-1\right)\times 270}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -9 for b, and 270 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-1\right)\times 270}}{2\left(-1\right)}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81+4\times 270}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-9\right)±\sqrt{81+1080}}{2\left(-1\right)}
Multiply 4 times 270.
x=\frac{-\left(-9\right)±\sqrt{1161}}{2\left(-1\right)}
Add 81 to 1080.
x=\frac{-\left(-9\right)±3\sqrt{129}}{2\left(-1\right)}
Take the square root of 1161.
x=\frac{9±3\sqrt{129}}{2\left(-1\right)}
The opposite of -9 is 9.
x=\frac{9±3\sqrt{129}}{-2}
Multiply 2 times -1.
x=\frac{3\sqrt{129}+9}{-2}
Now solve the equation x=\frac{9±3\sqrt{129}}{-2} when ± is plus. Add 9 to 3\sqrt{129}.
x=\frac{-3\sqrt{129}-9}{2}
Divide 9+3\sqrt{129} by -2.
x=\frac{9-3\sqrt{129}}{-2}
Now solve the equation x=\frac{9±3\sqrt{129}}{-2} when ± is minus. Subtract 3\sqrt{129} from 9.
x=\frac{3\sqrt{129}-9}{2}
Divide 9-3\sqrt{129} by -2.
x=\frac{-3\sqrt{129}-9}{2} x=\frac{3\sqrt{129}-9}{2}
The equation is now solved.
270-9x=x^{2}
Use the distributive property to multiply 9 by 30-x.
270-9x-x^{2}=0
Subtract x^{2} from both sides.
-9x-x^{2}=-270
Subtract 270 from both sides. Anything subtracted from zero gives its negation.
-x^{2}-9x=-270
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-9x}{-1}=-\frac{270}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{9}{-1}\right)x=-\frac{270}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+9x=-\frac{270}{-1}
Divide -9 by -1.
x^{2}+9x=270
Divide -270 by -1.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=270+\left(\frac{9}{2}\right)^{2}
Divide 9, the coefficient of the x term, by 2 to get \frac{9}{2}. Then add the square of \frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+9x+\frac{81}{4}=270+\frac{81}{4}
Square \frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+9x+\frac{81}{4}=\frac{1161}{4}
Add 270 to \frac{81}{4}.
\left(x+\frac{9}{2}\right)^{2}=\frac{1161}{4}
Factor x^{2}+9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{1161}{4}}
Take the square root of both sides of the equation.
x+\frac{9}{2}=\frac{3\sqrt{129}}{2} x+\frac{9}{2}=-\frac{3\sqrt{129}}{2}
Simplify.
x=\frac{3\sqrt{129}-9}{2} x=\frac{-3\sqrt{129}-9}{2}
Subtract \frac{9}{2} from both sides of the equation.