Solve for y
y=\frac{-4z-128}{27}
Solve for z
z=-\frac{27y}{4}-32
Share
Copied to clipboard
-36-\frac{27}{2}y-2z=28
Use the distributive property to multiply 9 by -4-\frac{3}{2}y.
-\frac{27}{2}y-2z=28+36
Add 36 to both sides.
-\frac{27}{2}y-2z=64
Add 28 and 36 to get 64.
-\frac{27}{2}y=64+2z
Add 2z to both sides.
-\frac{27}{2}y=2z+64
The equation is in standard form.
\frac{-\frac{27}{2}y}{-\frac{27}{2}}=\frac{2z+64}{-\frac{27}{2}}
Divide both sides of the equation by -\frac{27}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{2z+64}{-\frac{27}{2}}
Dividing by -\frac{27}{2} undoes the multiplication by -\frac{27}{2}.
y=\frac{-4z-128}{27}
Divide 64+2z by -\frac{27}{2} by multiplying 64+2z by the reciprocal of -\frac{27}{2}.
-36-\frac{27}{2}y-2z=28
Use the distributive property to multiply 9 by -4-\frac{3}{2}y.
-\frac{27}{2}y-2z=28+36
Add 36 to both sides.
-\frac{27}{2}y-2z=64
Add 28 and 36 to get 64.
-2z=64+\frac{27}{2}y
Add \frac{27}{2}y to both sides.
-2z=\frac{27y}{2}+64
The equation is in standard form.
\frac{-2z}{-2}=\frac{\frac{27y}{2}+64}{-2}
Divide both sides by -2.
z=\frac{\frac{27y}{2}+64}{-2}
Dividing by -2 undoes the multiplication by -2.
z=-\frac{27y}{4}-32
Divide 64+\frac{27y}{2} by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}