Solve for x
x = \frac{18 {(\sqrt{3} + \sqrt{7})}}{1 - 2 \sqrt{14} - 4 \sqrt{3}} \approx 5.875579343
Graph
Share
Copied to clipboard
9\sqrt{7}+9\sqrt{3}=\sqrt{12}x+\sqrt{14}x+\frac{1}{2}x-x
Use the distributive property to multiply 9 by \sqrt{7}+\sqrt{3}.
9\sqrt{7}+9\sqrt{3}=2\sqrt{3}x+\sqrt{14}x+\frac{1}{2}x-x
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
9\sqrt{7}+9\sqrt{3}=2\sqrt{3}x+\sqrt{14}x-\frac{1}{2}x
Combine \frac{1}{2}x and -x to get -\frac{1}{2}x.
2\sqrt{3}x+\sqrt{14}x-\frac{1}{2}x=9\sqrt{7}+9\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
\left(2\sqrt{3}+\sqrt{14}-\frac{1}{2}\right)x=9\sqrt{7}+9\sqrt{3}
Combine all terms containing x.
\left(\sqrt{14}+2\sqrt{3}-\frac{1}{2}\right)x=9\sqrt{3}+9\sqrt{7}
The equation is in standard form.
\frac{\left(\sqrt{14}+2\sqrt{3}-\frac{1}{2}\right)x}{\sqrt{14}+2\sqrt{3}-\frac{1}{2}}=\frac{9\sqrt{3}+9\sqrt{7}}{\sqrt{14}+2\sqrt{3}-\frac{1}{2}}
Divide both sides by 2\sqrt{3}+\sqrt{14}-\frac{1}{2}.
x=\frac{9\sqrt{3}+9\sqrt{7}}{\sqrt{14}+2\sqrt{3}-\frac{1}{2}}
Dividing by 2\sqrt{3}+\sqrt{14}-\frac{1}{2} undoes the multiplication by 2\sqrt{3}+\sqrt{14}-\frac{1}{2}.
x=\frac{18\left(\sqrt{3}+\sqrt{7}\right)}{2\sqrt{14}+4\sqrt{3}-1}
Divide 9\sqrt{7}+9\sqrt{3} by 2\sqrt{3}+\sqrt{14}-\frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}