Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9\sqrt{7}+9\sqrt{3}=\sqrt{12}x+\sqrt{14}x+\frac{1}{2}x-x
Use the distributive property to multiply 9 by \sqrt{7}+\sqrt{3}.
9\sqrt{7}+9\sqrt{3}=2\sqrt{3}x+\sqrt{14}x+\frac{1}{2}x-x
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
9\sqrt{7}+9\sqrt{3}=2\sqrt{3}x+\sqrt{14}x-\frac{1}{2}x
Combine \frac{1}{2}x and -x to get -\frac{1}{2}x.
2\sqrt{3}x+\sqrt{14}x-\frac{1}{2}x=9\sqrt{7}+9\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
\left(2\sqrt{3}+\sqrt{14}-\frac{1}{2}\right)x=9\sqrt{7}+9\sqrt{3}
Combine all terms containing x.
\left(\sqrt{14}+2\sqrt{3}-\frac{1}{2}\right)x=9\sqrt{3}+9\sqrt{7}
The equation is in standard form.
\frac{\left(\sqrt{14}+2\sqrt{3}-\frac{1}{2}\right)x}{\sqrt{14}+2\sqrt{3}-\frac{1}{2}}=\frac{9\sqrt{3}+9\sqrt{7}}{\sqrt{14}+2\sqrt{3}-\frac{1}{2}}
Divide both sides by 2\sqrt{3}+\sqrt{14}-\frac{1}{2}.
x=\frac{9\sqrt{3}+9\sqrt{7}}{\sqrt{14}+2\sqrt{3}-\frac{1}{2}}
Dividing by 2\sqrt{3}+\sqrt{14}-\frac{1}{2} undoes the multiplication by 2\sqrt{3}+\sqrt{14}-\frac{1}{2}.
x=\frac{18\left(\sqrt{3}+\sqrt{7}\right)}{2\sqrt{14}+4\sqrt{3}-1}
Divide 9\sqrt{7}+9\sqrt{3} by 2\sqrt{3}+\sqrt{14}-\frac{1}{2}.