9,87 - ( 5 \frac { 7 } { 12 } + 1,87 )
Evaluate
\frac{29}{12}\approx 2,416666667
Factor
\frac{29}{3 \cdot 2 ^ {2}} = 2\frac{5}{12} = 2.4166666666666665
Share
Copied to clipboard
9,87-\left(\frac{60+7}{12}+1,87\right)
Multiply 5 and 12 to get 60.
9,87-\left(\frac{67}{12}+1,87\right)
Add 60 and 7 to get 67.
9,87-\left(\frac{67}{12}+\frac{187}{100}\right)
Convert decimal number 1,87 to fraction \frac{187}{100}.
9,87-\left(\frac{1675}{300}+\frac{561}{300}\right)
Least common multiple of 12 and 100 is 300. Convert \frac{67}{12} and \frac{187}{100} to fractions with denominator 300.
9,87-\frac{1675+561}{300}
Since \frac{1675}{300} and \frac{561}{300} have the same denominator, add them by adding their numerators.
9,87-\frac{2236}{300}
Add 1675 and 561 to get 2236.
9,87-\frac{559}{75}
Reduce the fraction \frac{2236}{300} to lowest terms by extracting and canceling out 4.
\frac{987}{100}-\frac{559}{75}
Convert decimal number 9,87 to fraction \frac{987}{100}.
\frac{2961}{300}-\frac{2236}{300}
Least common multiple of 100 and 75 is 300. Convert \frac{987}{100} and \frac{559}{75} to fractions with denominator 300.
\frac{2961-2236}{300}
Since \frac{2961}{300} and \frac{2236}{300} have the same denominator, subtract them by subtracting their numerators.
\frac{725}{300}
Subtract 2236 from 2961 to get 725.
\frac{29}{12}
Reduce the fraction \frac{725}{300} to lowest terms by extracting and canceling out 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}