Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

17=2x^{2}+10
Add 9 and 8 to get 17.
2x^{2}+10=17
Swap sides so that all variable terms are on the left hand side.
2x^{2}=17-10
Subtract 10 from both sides.
2x^{2}=7
Subtract 10 from 17 to get 7.
x^{2}=\frac{7}{2}
Divide both sides by 2.
x=\frac{\sqrt{14}}{2} x=-\frac{\sqrt{14}}{2}
Take the square root of both sides of the equation.
17=2x^{2}+10
Add 9 and 8 to get 17.
2x^{2}+10=17
Swap sides so that all variable terms are on the left hand side.
2x^{2}+10-17=0
Subtract 17 from both sides.
2x^{2}-7=0
Subtract 17 from 10 to get -7.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-7\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-7\right)}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\left(-7\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{56}}{2\times 2}
Multiply -8 times -7.
x=\frac{0±2\sqrt{14}}{2\times 2}
Take the square root of 56.
x=\frac{0±2\sqrt{14}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{14}}{2}
Now solve the equation x=\frac{0±2\sqrt{14}}{4} when ± is plus.
x=-\frac{\sqrt{14}}{2}
Now solve the equation x=\frac{0±2\sqrt{14}}{4} when ± is minus.
x=\frac{\sqrt{14}}{2} x=-\frac{\sqrt{14}}{2}
The equation is now solved.