Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9+1+2x+x^{2}=\left(3+\sqrt{x^{2}-1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
10+2x+x^{2}=\left(3+\sqrt{x^{2}-1}\right)^{2}
Add 9 and 1 to get 10.
10+2x+x^{2}=9+6\sqrt{x^{2}-1}+\left(\sqrt{x^{2}-1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{x^{2}-1}\right)^{2}.
10+2x+x^{2}=9+6\sqrt{x^{2}-1}+x^{2}-1
Calculate \sqrt{x^{2}-1} to the power of 2 and get x^{2}-1.
10+2x+x^{2}=8+6\sqrt{x^{2}-1}+x^{2}
Subtract 1 from 9 to get 8.
10+2x+x^{2}-6\sqrt{x^{2}-1}=8+x^{2}
Subtract 6\sqrt{x^{2}-1} from both sides.
10+2x+x^{2}-6\sqrt{x^{2}-1}-x^{2}=8
Subtract x^{2} from both sides.
10+2x-6\sqrt{x^{2}-1}=8
Combine x^{2} and -x^{2} to get 0.
-6\sqrt{x^{2}-1}=8-\left(10+2x\right)
Subtract 10+2x from both sides of the equation.
-6\sqrt{x^{2}-1}=8-10-2x
To find the opposite of 10+2x, find the opposite of each term.
-6\sqrt{x^{2}-1}=-2-2x
Subtract 10 from 8 to get -2.
\left(-6\sqrt{x^{2}-1}\right)^{2}=\left(-2-2x\right)^{2}
Square both sides of the equation.
\left(-6\right)^{2}\left(\sqrt{x^{2}-1}\right)^{2}=\left(-2-2x\right)^{2}
Expand \left(-6\sqrt{x^{2}-1}\right)^{2}.
36\left(\sqrt{x^{2}-1}\right)^{2}=\left(-2-2x\right)^{2}
Calculate -6 to the power of 2 and get 36.
36\left(x^{2}-1\right)=\left(-2-2x\right)^{2}
Calculate \sqrt{x^{2}-1} to the power of 2 and get x^{2}-1.
36x^{2}-36=\left(-2-2x\right)^{2}
Use the distributive property to multiply 36 by x^{2}-1.
36x^{2}-36=4+8x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2-2x\right)^{2}.
36x^{2}-36-4=8x+4x^{2}
Subtract 4 from both sides.
36x^{2}-40=8x+4x^{2}
Subtract 4 from -36 to get -40.
36x^{2}-40-8x=4x^{2}
Subtract 8x from both sides.
36x^{2}-40-8x-4x^{2}=0
Subtract 4x^{2} from both sides.
32x^{2}-40-8x=0
Combine 36x^{2} and -4x^{2} to get 32x^{2}.
4x^{2}-5-x=0
Divide both sides by 8.
4x^{2}-x-5=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-1 ab=4\left(-5\right)=-20
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
1,-20 2,-10 4,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -20.
1-20=-19 2-10=-8 4-5=-1
Calculate the sum for each pair.
a=-5 b=4
The solution is the pair that gives sum -1.
\left(4x^{2}-5x\right)+\left(4x-5\right)
Rewrite 4x^{2}-x-5 as \left(4x^{2}-5x\right)+\left(4x-5\right).
x\left(4x-5\right)+4x-5
Factor out x in 4x^{2}-5x.
\left(4x-5\right)\left(x+1\right)
Factor out common term 4x-5 by using distributive property.
x=\frac{5}{4} x=-1
To find equation solutions, solve 4x-5=0 and x+1=0.
9+\left(1+\frac{5}{4}\right)^{2}=\left(3+\sqrt{\left(\frac{5}{4}\right)^{2}-1}\right)^{2}
Substitute \frac{5}{4} for x in the equation 9+\left(1+x\right)^{2}=\left(3+\sqrt{x^{2}-1}\right)^{2}.
\frac{225}{16}=\frac{225}{16}
Simplify. The value x=\frac{5}{4} satisfies the equation.
9+\left(1-1\right)^{2}=\left(3+\sqrt{\left(-1\right)^{2}-1}\right)^{2}
Substitute -1 for x in the equation 9+\left(1+x\right)^{2}=\left(3+\sqrt{x^{2}-1}\right)^{2}.
9=9
Simplify. The value x=-1 satisfies the equation.
x=\frac{5}{4} x=-1
List all solutions of -6\sqrt{x^{2}-1}=-2x-2.