Solve for a
a=-\frac{5+y-3y^{2}}{2-3y}
y\neq \frac{2}{3}
Solve for y
y=-\frac{\sqrt{9a^{2}+18a+61}}{6}-\frac{a}{2}+\frac{1}{6}
y=\frac{\sqrt{9a^{2}+18a+61}}{6}-\frac{a}{2}+\frac{1}{6}
Graph
Share
Copied to clipboard
9+\left(-3a-3y\right)y+y+2a-4=0
Use the distributive property to multiply a+y by -3.
9-3ay-3y^{2}+y+2a-4=0
Use the distributive property to multiply -3a-3y by y.
5-3ay-3y^{2}+y+2a=0
Subtract 4 from 9 to get 5.
-3ay-3y^{2}+y+2a=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
-3ay+y+2a=-5+3y^{2}
Add 3y^{2} to both sides.
-3ay+2a=-5+3y^{2}-y
Subtract y from both sides.
\left(-3y+2\right)a=-5+3y^{2}-y
Combine all terms containing a.
\left(2-3y\right)a=3y^{2}-y-5
The equation is in standard form.
\frac{\left(2-3y\right)a}{2-3y}=\frac{3y^{2}-y-5}{2-3y}
Divide both sides by 2-3y.
a=\frac{3y^{2}-y-5}{2-3y}
Dividing by 2-3y undoes the multiplication by 2-3y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}