Evaluate
\frac{3661}{400}=9.1525
Factor
\frac{7 \cdot 523}{2 ^ {4} \cdot 5 ^ {2}} = 9\frac{61}{400} = 9.1525
Share
Copied to clipboard
9+\frac{3}{20}+\frac{9}{3600}
Reduce the fraction \frac{9}{60} to lowest terms by extracting and canceling out 3.
\frac{180}{20}+\frac{3}{20}+\frac{9}{3600}
Convert 9 to fraction \frac{180}{20}.
\frac{180+3}{20}+\frac{9}{3600}
Since \frac{180}{20} and \frac{3}{20} have the same denominator, add them by adding their numerators.
\frac{183}{20}+\frac{9}{3600}
Add 180 and 3 to get 183.
\frac{183}{20}+\frac{1}{400}
Reduce the fraction \frac{9}{3600} to lowest terms by extracting and canceling out 9.
\frac{3660}{400}+\frac{1}{400}
Least common multiple of 20 and 400 is 400. Convert \frac{183}{20} and \frac{1}{400} to fractions with denominator 400.
\frac{3660+1}{400}
Since \frac{3660}{400} and \frac{1}{400} have the same denominator, add them by adding their numerators.
\frac{3661}{400}
Add 3660 and 1 to get 3661.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}