Factor
\left(3z-2\right)\left(3z+8\right)
Evaluate
\left(3z-2\right)\left(3z+8\right)
Share
Copied to clipboard
a+b=18 ab=9\left(-16\right)=-144
Factor the expression by grouping. First, the expression needs to be rewritten as 9z^{2}+az+bz-16. To find a and b, set up a system to be solved.
-1,144 -2,72 -3,48 -4,36 -6,24 -8,18 -9,16 -12,12
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -144.
-1+144=143 -2+72=70 -3+48=45 -4+36=32 -6+24=18 -8+18=10 -9+16=7 -12+12=0
Calculate the sum for each pair.
a=-6 b=24
The solution is the pair that gives sum 18.
\left(9z^{2}-6z\right)+\left(24z-16\right)
Rewrite 9z^{2}+18z-16 as \left(9z^{2}-6z\right)+\left(24z-16\right).
3z\left(3z-2\right)+8\left(3z-2\right)
Factor out 3z in the first and 8 in the second group.
\left(3z-2\right)\left(3z+8\right)
Factor out common term 3z-2 by using distributive property.
9z^{2}+18z-16=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
z=\frac{-18±\sqrt{18^{2}-4\times 9\left(-16\right)}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-18±\sqrt{324-4\times 9\left(-16\right)}}{2\times 9}
Square 18.
z=\frac{-18±\sqrt{324-36\left(-16\right)}}{2\times 9}
Multiply -4 times 9.
z=\frac{-18±\sqrt{324+576}}{2\times 9}
Multiply -36 times -16.
z=\frac{-18±\sqrt{900}}{2\times 9}
Add 324 to 576.
z=\frac{-18±30}{2\times 9}
Take the square root of 900.
z=\frac{-18±30}{18}
Multiply 2 times 9.
z=\frac{12}{18}
Now solve the equation z=\frac{-18±30}{18} when ± is plus. Add -18 to 30.
z=\frac{2}{3}
Reduce the fraction \frac{12}{18} to lowest terms by extracting and canceling out 6.
z=-\frac{48}{18}
Now solve the equation z=\frac{-18±30}{18} when ± is minus. Subtract 30 from -18.
z=-\frac{8}{3}
Reduce the fraction \frac{-48}{18} to lowest terms by extracting and canceling out 6.
9z^{2}+18z-16=9\left(z-\frac{2}{3}\right)\left(z-\left(-\frac{8}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{3} for x_{1} and -\frac{8}{3} for x_{2}.
9z^{2}+18z-16=9\left(z-\frac{2}{3}\right)\left(z+\frac{8}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
9z^{2}+18z-16=9\times \frac{3z-2}{3}\left(z+\frac{8}{3}\right)
Subtract \frac{2}{3} from z by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
9z^{2}+18z-16=9\times \frac{3z-2}{3}\times \frac{3z+8}{3}
Add \frac{8}{3} to z by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
9z^{2}+18z-16=9\times \frac{\left(3z-2\right)\left(3z+8\right)}{3\times 3}
Multiply \frac{3z-2}{3} times \frac{3z+8}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
9z^{2}+18z-16=9\times \frac{\left(3z-2\right)\left(3z+8\right)}{9}
Multiply 3 times 3.
9z^{2}+18z-16=\left(3z-2\right)\left(3z+8\right)
Cancel out 9, the greatest common factor in 9 and 9.
x ^ 2 +2x -\frac{16}{9} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 9
r + s = -2 rs = -\frac{16}{9}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -1 - u s = -1 + u
Two numbers r and s sum up to -2 exactly when the average of the two numbers is \frac{1}{2}*-2 = -1. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-1 - u) (-1 + u) = -\frac{16}{9}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{16}{9}
1 - u^2 = -\frac{16}{9}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{16}{9}-1 = -\frac{25}{9}
Simplify the expression by subtracting 1 on both sides
u^2 = \frac{25}{9} u = \pm\sqrt{\frac{25}{9}} = \pm \frac{5}{3}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-1 - \frac{5}{3} = -2.667 s = -1 + \frac{5}{3} = 0.667
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}