Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(3z+10z^{2}\right)
Factor out 3.
z\left(3+10z\right)
Consider 3z+10z^{2}. Factor out z.
3z\left(10z+3\right)
Rewrite the complete factored expression.
30z^{2}+9z=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
z=\frac{-9±\sqrt{9^{2}}}{2\times 30}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-9±9}{2\times 30}
Take the square root of 9^{2}.
z=\frac{-9±9}{60}
Multiply 2 times 30.
z=\frac{0}{60}
Now solve the equation z=\frac{-9±9}{60} when ± is plus. Add -9 to 9.
z=0
Divide 0 by 60.
z=-\frac{18}{60}
Now solve the equation z=\frac{-9±9}{60} when ± is minus. Subtract 9 from -9.
z=-\frac{3}{10}
Reduce the fraction \frac{-18}{60} to lowest terms by extracting and canceling out 6.
30z^{2}+9z=30z\left(z-\left(-\frac{3}{10}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{3}{10} for x_{2}.
30z^{2}+9z=30z\left(z+\frac{3}{10}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
30z^{2}+9z=30z\times \frac{10z+3}{10}
Add \frac{3}{10} to z by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
30z^{2}+9z=3z\left(10z+3\right)
Cancel out 10, the greatest common factor in 30 and 10.