Skip to main content
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

10y^{2}-90y+225+6y-30=-6y+5-0
Combine 9y^{2} and y^{2} to get 10y^{2}.
10y^{2}-84y+225-30=-6y+5-0
Combine -90y and 6y to get -84y.
10y^{2}-84y+195=-6y+5-0
Subtract 30 from 225 to get 195.
10y^{2}-84y+195+0=-6y+5
Add 0 to both sides.
10y^{2}-84y+195=-6y+5
Add 195 and 0 to get 195.
10y^{2}-84y+195+6y=5
Add 6y to both sides.
10y^{2}-78y+195=5
Combine -84y and 6y to get -78y.
10y^{2}-78y+195-5=0
Subtract 5 from both sides.
10y^{2}-78y+190=0
Subtract 5 from 195 to get 190.
y=\frac{-\left(-78\right)±\sqrt{\left(-78\right)^{2}-4\times 10\times 190}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -78 for b, and 190 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-78\right)±\sqrt{6084-4\times 10\times 190}}{2\times 10}
Square -78.
y=\frac{-\left(-78\right)±\sqrt{6084-40\times 190}}{2\times 10}
Multiply -4 times 10.
y=\frac{-\left(-78\right)±\sqrt{6084-7600}}{2\times 10}
Multiply -40 times 190.
y=\frac{-\left(-78\right)±\sqrt{-1516}}{2\times 10}
Add 6084 to -7600.
y=\frac{-\left(-78\right)±2\sqrt{379}i}{2\times 10}
Take the square root of -1516.
y=\frac{78±2\sqrt{379}i}{2\times 10}
The opposite of -78 is 78.
y=\frac{78±2\sqrt{379}i}{20}
Multiply 2 times 10.
y=\frac{78+2\sqrt{379}i}{20}
Now solve the equation y=\frac{78±2\sqrt{379}i}{20} when ± is plus. Add 78 to 2i\sqrt{379}.
y=\frac{39+\sqrt{379}i}{10}
Divide 78+2i\sqrt{379} by 20.
y=\frac{-2\sqrt{379}i+78}{20}
Now solve the equation y=\frac{78±2\sqrt{379}i}{20} when ± is minus. Subtract 2i\sqrt{379} from 78.
y=\frac{-\sqrt{379}i+39}{10}
Divide 78-2i\sqrt{379} by 20.
y=\frac{39+\sqrt{379}i}{10} y=\frac{-\sqrt{379}i+39}{10}
The equation is now solved.
10y^{2}-90y+225+6y-30=-6y+5-0
Combine 9y^{2} and y^{2} to get 10y^{2}.
10y^{2}-84y+225-30=-6y+5-0
Combine -90y and 6y to get -84y.
10y^{2}-84y+195=-6y+5-0
Subtract 30 from 225 to get 195.
10y^{2}-84y+195-\left(-6y+5\right)=-0
Subtract -6y+5 from both sides.
10y^{2}-84y+195+6y-5=-0
To find the opposite of -6y+5, find the opposite of each term.
10y^{2}-78y+195-5=-0
Combine -84y and 6y to get -78y.
10y^{2}-78y+190=-0
Subtract 5 from 195 to get 190.
10y^{2}-78y+190=0
Multiply -1 and 0 to get 0.
10y^{2}-78y=-190
Subtract 190 from both sides. Anything subtracted from zero gives its negation.
\frac{10y^{2}-78y}{10}=-\frac{190}{10}
Divide both sides by 10.
y^{2}+\left(-\frac{78}{10}\right)y=-\frac{190}{10}
Dividing by 10 undoes the multiplication by 10.
y^{2}-\frac{39}{5}y=-\frac{190}{10}
Reduce the fraction \frac{-78}{10} to lowest terms by extracting and canceling out 2.
y^{2}-\frac{39}{5}y=-19
Divide -190 by 10.
y^{2}-\frac{39}{5}y+\left(-\frac{39}{10}\right)^{2}=-19+\left(-\frac{39}{10}\right)^{2}
Divide -\frac{39}{5}, the coefficient of the x term, by 2 to get -\frac{39}{10}. Then add the square of -\frac{39}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{39}{5}y+\frac{1521}{100}=-19+\frac{1521}{100}
Square -\frac{39}{10} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{39}{5}y+\frac{1521}{100}=-\frac{379}{100}
Add -19 to \frac{1521}{100}.
\left(y-\frac{39}{10}\right)^{2}=-\frac{379}{100}
Factor y^{2}-\frac{39}{5}y+\frac{1521}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{39}{10}\right)^{2}}=\sqrt{-\frac{379}{100}}
Take the square root of both sides of the equation.
y-\frac{39}{10}=\frac{\sqrt{379}i}{10} y-\frac{39}{10}=-\frac{\sqrt{379}i}{10}
Simplify.
y=\frac{39+\sqrt{379}i}{10} y=\frac{-\sqrt{379}i+39}{10}
Add \frac{39}{10} to both sides of the equation.