Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

9\left(y^{2}-7y\right)
Factor out 9.
y\left(y-7\right)
Consider y^{2}-7y. Factor out y.
9y\left(y-7\right)
Rewrite the complete factored expression.
9y^{2}-63y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-63\right)±\sqrt{\left(-63\right)^{2}}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-63\right)±63}{2\times 9}
Take the square root of \left(-63\right)^{2}.
y=\frac{63±63}{2\times 9}
The opposite of -63 is 63.
y=\frac{63±63}{18}
Multiply 2 times 9.
y=\frac{126}{18}
Now solve the equation y=\frac{63±63}{18} when ± is plus. Add 63 to 63.
y=7
Divide 126 by 18.
y=\frac{0}{18}
Now solve the equation y=\frac{63±63}{18} when ± is minus. Subtract 63 from 63.
y=0
Divide 0 by 18.
9y^{2}-63y=9\left(y-7\right)y
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 7 for x_{1} and 0 for x_{2}.