Solve for y
y = \frac{\sqrt{229} + 11}{18} \approx 1.451819219
y=\frac{11-\sqrt{229}}{18}\approx -0.229596997
Graph
Share
Copied to clipboard
9y^{2}-11y=3
Subtract 11y from both sides.
9y^{2}-11y-3=0
Subtract 3 from both sides.
y=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 9\left(-3\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -11 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-11\right)±\sqrt{121-4\times 9\left(-3\right)}}{2\times 9}
Square -11.
y=\frac{-\left(-11\right)±\sqrt{121-36\left(-3\right)}}{2\times 9}
Multiply -4 times 9.
y=\frac{-\left(-11\right)±\sqrt{121+108}}{2\times 9}
Multiply -36 times -3.
y=\frac{-\left(-11\right)±\sqrt{229}}{2\times 9}
Add 121 to 108.
y=\frac{11±\sqrt{229}}{2\times 9}
The opposite of -11 is 11.
y=\frac{11±\sqrt{229}}{18}
Multiply 2 times 9.
y=\frac{\sqrt{229}+11}{18}
Now solve the equation y=\frac{11±\sqrt{229}}{18} when ± is plus. Add 11 to \sqrt{229}.
y=\frac{11-\sqrt{229}}{18}
Now solve the equation y=\frac{11±\sqrt{229}}{18} when ± is minus. Subtract \sqrt{229} from 11.
y=\frac{\sqrt{229}+11}{18} y=\frac{11-\sqrt{229}}{18}
The equation is now solved.
9y^{2}-11y=3
Subtract 11y from both sides.
\frac{9y^{2}-11y}{9}=\frac{3}{9}
Divide both sides by 9.
y^{2}-\frac{11}{9}y=\frac{3}{9}
Dividing by 9 undoes the multiplication by 9.
y^{2}-\frac{11}{9}y=\frac{1}{3}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
y^{2}-\frac{11}{9}y+\left(-\frac{11}{18}\right)^{2}=\frac{1}{3}+\left(-\frac{11}{18}\right)^{2}
Divide -\frac{11}{9}, the coefficient of the x term, by 2 to get -\frac{11}{18}. Then add the square of -\frac{11}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{11}{9}y+\frac{121}{324}=\frac{1}{3}+\frac{121}{324}
Square -\frac{11}{18} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{11}{9}y+\frac{121}{324}=\frac{229}{324}
Add \frac{1}{3} to \frac{121}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{11}{18}\right)^{2}=\frac{229}{324}
Factor y^{2}-\frac{11}{9}y+\frac{121}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{11}{18}\right)^{2}}=\sqrt{\frac{229}{324}}
Take the square root of both sides of the equation.
y-\frac{11}{18}=\frac{\sqrt{229}}{18} y-\frac{11}{18}=-\frac{\sqrt{229}}{18}
Simplify.
y=\frac{\sqrt{229}+11}{18} y=\frac{11-\sqrt{229}}{18}
Add \frac{11}{18} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}