Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

9y-6y^{2}=0
Subtract 6y^{2} from both sides.
y\left(9-6y\right)=0
Factor out y.
y=0 y=\frac{3}{2}
To find equation solutions, solve y=0 and 9-6y=0.
9y-6y^{2}=0
Subtract 6y^{2} from both sides.
-6y^{2}+9y=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-9±\sqrt{9^{2}}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 9 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-9±9}{2\left(-6\right)}
Take the square root of 9^{2}.
y=\frac{-9±9}{-12}
Multiply 2 times -6.
y=\frac{0}{-12}
Now solve the equation y=\frac{-9±9}{-12} when ± is plus. Add -9 to 9.
y=0
Divide 0 by -12.
y=-\frac{18}{-12}
Now solve the equation y=\frac{-9±9}{-12} when ± is minus. Subtract 9 from -9.
y=\frac{3}{2}
Reduce the fraction \frac{-18}{-12} to lowest terms by extracting and canceling out 6.
y=0 y=\frac{3}{2}
The equation is now solved.
9y-6y^{2}=0
Subtract 6y^{2} from both sides.
-6y^{2}+9y=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-6y^{2}+9y}{-6}=\frac{0}{-6}
Divide both sides by -6.
y^{2}+\frac{9}{-6}y=\frac{0}{-6}
Dividing by -6 undoes the multiplication by -6.
y^{2}-\frac{3}{2}y=\frac{0}{-6}
Reduce the fraction \frac{9}{-6} to lowest terms by extracting and canceling out 3.
y^{2}-\frac{3}{2}y=0
Divide 0 by -6.
y^{2}-\frac{3}{2}y+\left(-\frac{3}{4}\right)^{2}=\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{3}{2}y+\frac{9}{16}=\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
\left(y-\frac{3}{4}\right)^{2}=\frac{9}{16}
Factor y^{2}-\frac{3}{2}y+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{3}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
y-\frac{3}{4}=\frac{3}{4} y-\frac{3}{4}=-\frac{3}{4}
Simplify.
y=\frac{3}{2} y=0
Add \frac{3}{4} to both sides of the equation.