Solve for v (complex solution)
\left\{\begin{matrix}v=-y-\frac{w}{x}+9\text{, }&x\neq 0\\v\in \mathrm{C}\text{, }&x=0\text{ and }w=0\end{matrix}\right.
Solve for v
\left\{\begin{matrix}v=-y-\frac{w}{x}+9\text{, }&x\neq 0\\v\in \mathrm{R}\text{, }&x=0\text{ and }w=0\end{matrix}\right.
Solve for w
w=x\left(9-v-y\right)
Graph
Share
Copied to clipboard
vx+yx=9x-w
Swap sides so that all variable terms are on the left hand side.
vx=9x-w-yx
Subtract yx from both sides.
xv=-xy+9x-w
The equation is in standard form.
\frac{xv}{x}=\frac{-xy+9x-w}{x}
Divide both sides by x.
v=\frac{-xy+9x-w}{x}
Dividing by x undoes the multiplication by x.
v=-y-\frac{w}{x}+9
Divide 9x-w-yx by x.
vx+yx=9x-w
Swap sides so that all variable terms are on the left hand side.
vx=9x-w-yx
Subtract yx from both sides.
xv=-xy+9x-w
The equation is in standard form.
\frac{xv}{x}=\frac{-xy+9x-w}{x}
Divide both sides by x.
v=\frac{-xy+9x-w}{x}
Dividing by x undoes the multiplication by x.
v=-y-\frac{w}{x}+9
Divide 9x-w-yx by x.
-w=vx+yx-9x
Subtract 9x from both sides.
-w=vx+xy-9x
The equation is in standard form.
\frac{-w}{-1}=\frac{x\left(y+v-9\right)}{-1}
Divide both sides by -1.
w=\frac{x\left(y+v-9\right)}{-1}
Dividing by -1 undoes the multiplication by -1.
w=-x\left(y+v-9\right)
Divide x\left(-9+v+y\right) by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}