Evaluate
x^{2}+3x-45
Expand
x^{2}+3x-45
Graph
Share
Copied to clipboard
9x-6x-36+\left(x-3\right)\left(x+3\right)
Use the distributive property to multiply -6 by x+6.
3x-36+\left(x-3\right)\left(x+3\right)
Combine 9x and -6x to get 3x.
3x-36+x^{2}-3^{2}
Consider \left(x-3\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3x-36+x^{2}-9
Calculate 3 to the power of 2 and get 9.
3x-45+x^{2}
Subtract 9 from -36 to get -45.
9x-6x-36+\left(x-3\right)\left(x+3\right)
Use the distributive property to multiply -6 by x+6.
3x-36+\left(x-3\right)\left(x+3\right)
Combine 9x and -6x to get 3x.
3x-36+x^{2}-3^{2}
Consider \left(x-3\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3x-36+x^{2}-9
Calculate 3 to the power of 2 and get 9.
3x-45+x^{2}
Subtract 9 from -36 to get -45.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}