Solve for x
x=\frac{2\left(y+10\right)}{9}
Solve for y
y=\frac{9x}{2}-10
Graph
Share
Copied to clipboard
9x=20+2y
Add 2y to both sides.
9x=2y+20
The equation is in standard form.
\frac{9x}{9}=\frac{2y+20}{9}
Divide both sides by 9.
x=\frac{2y+20}{9}
Dividing by 9 undoes the multiplication by 9.
-2y=20-9x
Subtract 9x from both sides.
\frac{-2y}{-2}=\frac{20-9x}{-2}
Divide both sides by -2.
y=\frac{20-9x}{-2}
Dividing by -2 undoes the multiplication by -2.
y=\frac{9x}{2}-10
Divide 20-9x by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}