Solve for x
x>\frac{1}{6}
Graph
Share
Copied to clipboard
9x-1<\frac{3}{4}\times 16x+\frac{3}{4}\left(-2\right)
Use the distributive property to multiply \frac{3}{4} by 16x-2.
9x-1<\frac{3\times 16}{4}x+\frac{3}{4}\left(-2\right)
Express \frac{3}{4}\times 16 as a single fraction.
9x-1<\frac{48}{4}x+\frac{3}{4}\left(-2\right)
Multiply 3 and 16 to get 48.
9x-1<12x+\frac{3}{4}\left(-2\right)
Divide 48 by 4 to get 12.
9x-1<12x+\frac{3\left(-2\right)}{4}
Express \frac{3}{4}\left(-2\right) as a single fraction.
9x-1<12x+\frac{-6}{4}
Multiply 3 and -2 to get -6.
9x-1<12x-\frac{3}{2}
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
9x-1-12x<-\frac{3}{2}
Subtract 12x from both sides.
-3x-1<-\frac{3}{2}
Combine 9x and -12x to get -3x.
-3x<-\frac{3}{2}+1
Add 1 to both sides.
-3x<-\frac{3}{2}+\frac{2}{2}
Convert 1 to fraction \frac{2}{2}.
-3x<\frac{-3+2}{2}
Since -\frac{3}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
-3x<-\frac{1}{2}
Add -3 and 2 to get -1.
x>\frac{-\frac{1}{2}}{-3}
Divide both sides by -3. Since -3 is negative, the inequality direction is changed.
x>\frac{-1}{2\left(-3\right)}
Express \frac{-\frac{1}{2}}{-3} as a single fraction.
x>\frac{-1}{-6}
Multiply 2 and -3 to get -6.
x>\frac{1}{6}
Fraction \frac{-1}{-6} can be simplified to \frac{1}{6} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}