Solve for x
x=\frac{1}{3}+\frac{2}{9y}
y\neq 0
Solve for y
y=-\frac{2}{3\left(1-3x\right)}
x\neq \frac{1}{3}
Graph
Share
Copied to clipboard
9xy-2=3y
Multiply both sides of the equation by y.
9xy=3y+2
Add 2 to both sides.
9yx=3y+2
The equation is in standard form.
\frac{9yx}{9y}=\frac{3y+2}{9y}
Divide both sides by 9y.
x=\frac{3y+2}{9y}
Dividing by 9y undoes the multiplication by 9y.
x=\frac{1}{3}+\frac{2}{9y}
Divide 3y+2 by 9y.
9xy-2=3y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
9xy-2-3y=0
Subtract 3y from both sides.
9xy-3y=2
Add 2 to both sides. Anything plus zero gives itself.
\left(9x-3\right)y=2
Combine all terms containing y.
\frac{\left(9x-3\right)y}{9x-3}=\frac{2}{9x-3}
Divide both sides by 9x-3.
y=\frac{2}{9x-3}
Dividing by 9x-3 undoes the multiplication by 9x-3.
y=\frac{2}{3\left(3x-1\right)}
Divide 2 by 9x-3.
y=\frac{2}{3\left(3x-1\right)}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}