Evaluate
\left(4x-5\right)\left(3x+2\right)
Factor
\left(4x-5\right)\left(3x+2\right)
Graph
Share
Copied to clipboard
12x^{2}-4-7x-6
Combine 9x^{2} and 3x^{2} to get 12x^{2}.
12x^{2}-10-7x
Subtract 6 from -4 to get -10.
12x^{2}-7x-10
Multiply and combine like terms.
a+b=-7 ab=12\left(-10\right)=-120
Factor the expression by grouping. First, the expression needs to be rewritten as 12x^{2}+ax+bx-10. To find a and b, set up a system to be solved.
1,-120 2,-60 3,-40 4,-30 5,-24 6,-20 8,-15 10,-12
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -120.
1-120=-119 2-60=-58 3-40=-37 4-30=-26 5-24=-19 6-20=-14 8-15=-7 10-12=-2
Calculate the sum for each pair.
a=-15 b=8
The solution is the pair that gives sum -7.
\left(12x^{2}-15x\right)+\left(8x-10\right)
Rewrite 12x^{2}-7x-10 as \left(12x^{2}-15x\right)+\left(8x-10\right).
3x\left(4x-5\right)+2\left(4x-5\right)
Factor out 3x in the first and 2 in the second group.
\left(4x-5\right)\left(3x+2\right)
Factor out common term 4x-5 by using distributive property.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}