Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-3x+225=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 9\times 225}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -3 for b, and 225 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 9\times 225}}{2\times 9}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-36\times 225}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-3\right)±\sqrt{9-8100}}{2\times 9}
Multiply -36 times 225.
x=\frac{-\left(-3\right)±\sqrt{-8091}}{2\times 9}
Add 9 to -8100.
x=\frac{-\left(-3\right)±3\sqrt{899}i}{2\times 9}
Take the square root of -8091.
x=\frac{3±3\sqrt{899}i}{2\times 9}
The opposite of -3 is 3.
x=\frac{3±3\sqrt{899}i}{18}
Multiply 2 times 9.
x=\frac{3+3\sqrt{899}i}{18}
Now solve the equation x=\frac{3±3\sqrt{899}i}{18} when ± is plus. Add 3 to 3i\sqrt{899}.
x=\frac{1+\sqrt{899}i}{6}
Divide 3+3i\sqrt{899} by 18.
x=\frac{-3\sqrt{899}i+3}{18}
Now solve the equation x=\frac{3±3\sqrt{899}i}{18} when ± is minus. Subtract 3i\sqrt{899} from 3.
x=\frac{-\sqrt{899}i+1}{6}
Divide 3-3i\sqrt{899} by 18.
x=\frac{1+\sqrt{899}i}{6} x=\frac{-\sqrt{899}i+1}{6}
The equation is now solved.
9x^{2}-3x+225=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}-3x+225-225=-225
Subtract 225 from both sides of the equation.
9x^{2}-3x=-225
Subtracting 225 from itself leaves 0.
\frac{9x^{2}-3x}{9}=-\frac{225}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{3}{9}\right)x=-\frac{225}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{1}{3}x=-\frac{225}{9}
Reduce the fraction \frac{-3}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{1}{3}x=-25
Divide -225 by 9.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=-25+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=-25+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{3}x+\frac{1}{36}=-\frac{899}{36}
Add -25 to \frac{1}{36}.
\left(x-\frac{1}{6}\right)^{2}=-\frac{899}{36}
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{-\frac{899}{36}}
Take the square root of both sides of the equation.
x-\frac{1}{6}=\frac{\sqrt{899}i}{6} x-\frac{1}{6}=-\frac{\sqrt{899}i}{6}
Simplify.
x=\frac{1+\sqrt{899}i}{6} x=\frac{-\sqrt{899}i+1}{6}
Add \frac{1}{6} to both sides of the equation.
x ^ 2 -\frac{1}{3}x +25 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 9
r + s = \frac{1}{3} rs = 25
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{1}{6} - u s = \frac{1}{6} + u
Two numbers r and s sum up to \frac{1}{3} exactly when the average of the two numbers is \frac{1}{2}*\frac{1}{3} = \frac{1}{6}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{1}{6} - u) (\frac{1}{6} + u) = 25
To solve for unknown quantity u, substitute these in the product equation rs = 25
\frac{1}{36} - u^2 = 25
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 25-\frac{1}{36} = \frac{899}{36}
Simplify the expression by subtracting \frac{1}{36} on both sides
u^2 = -\frac{899}{36} u = \pm\sqrt{-\frac{899}{36}} = \pm \frac{\sqrt{899}}{6}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{1}{6} - \frac{\sqrt{899}}{6}i = 0.167 - 4.997i s = \frac{1}{6} + \frac{\sqrt{899}}{6}i = 0.167 + 4.997i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.