Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-3x+\frac{1}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 9\times \frac{1}{4}}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -3 for b, and \frac{1}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 9\times \frac{1}{4}}}{2\times 9}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-36\times \frac{1}{4}}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-3\right)±\sqrt{9-9}}{2\times 9}
Multiply -36 times \frac{1}{4}.
x=\frac{-\left(-3\right)±\sqrt{0}}{2\times 9}
Add 9 to -9.
x=-\frac{-3}{2\times 9}
Take the square root of 0.
x=\frac{3}{2\times 9}
The opposite of -3 is 3.
x=\frac{3}{18}
Multiply 2 times 9.
x=\frac{1}{6}
Reduce the fraction \frac{3}{18} to lowest terms by extracting and canceling out 3.
9x^{2}-3x+\frac{1}{4}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}-3x+\frac{1}{4}-\frac{1}{4}=-\frac{1}{4}
Subtract \frac{1}{4} from both sides of the equation.
9x^{2}-3x=-\frac{1}{4}
Subtracting \frac{1}{4} from itself leaves 0.
\frac{9x^{2}-3x}{9}=-\frac{\frac{1}{4}}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{3}{9}\right)x=-\frac{\frac{1}{4}}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{1}{3}x=-\frac{\frac{1}{4}}{9}
Reduce the fraction \frac{-3}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{1}{3}x=-\frac{1}{36}
Divide -\frac{1}{4} by 9.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=-\frac{1}{36}+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{-1+1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{3}x+\frac{1}{36}=0
Add -\frac{1}{36} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{6}\right)^{2}=0
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{1}{6}=0 x-\frac{1}{6}=0
Simplify.
x=\frac{1}{6} x=\frac{1}{6}
Add \frac{1}{6} to both sides of the equation.
x=\frac{1}{6}
The equation is now solved. Solutions are the same.