Solve for x
x = \frac{5 \sqrt{13} + 10}{9} \approx 3.114195153
x=\frac{10-5\sqrt{13}}{9}\approx -0.891972931
Graph
Share
Copied to clipboard
9x^{2}-20x-25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 9\left(-25\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -20 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 9\left(-25\right)}}{2\times 9}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-36\left(-25\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-20\right)±\sqrt{400+900}}{2\times 9}
Multiply -36 times -25.
x=\frac{-\left(-20\right)±\sqrt{1300}}{2\times 9}
Add 400 to 900.
x=\frac{-\left(-20\right)±10\sqrt{13}}{2\times 9}
Take the square root of 1300.
x=\frac{20±10\sqrt{13}}{2\times 9}
The opposite of -20 is 20.
x=\frac{20±10\sqrt{13}}{18}
Multiply 2 times 9.
x=\frac{10\sqrt{13}+20}{18}
Now solve the equation x=\frac{20±10\sqrt{13}}{18} when ± is plus. Add 20 to 10\sqrt{13}.
x=\frac{5\sqrt{13}+10}{9}
Divide 20+10\sqrt{13} by 18.
x=\frac{20-10\sqrt{13}}{18}
Now solve the equation x=\frac{20±10\sqrt{13}}{18} when ± is minus. Subtract 10\sqrt{13} from 20.
x=\frac{10-5\sqrt{13}}{9}
Divide 20-10\sqrt{13} by 18.
x=\frac{5\sqrt{13}+10}{9} x=\frac{10-5\sqrt{13}}{9}
The equation is now solved.
9x^{2}-20x-25=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}-20x-25-\left(-25\right)=-\left(-25\right)
Add 25 to both sides of the equation.
9x^{2}-20x=-\left(-25\right)
Subtracting -25 from itself leaves 0.
9x^{2}-20x=25
Subtract -25 from 0.
\frac{9x^{2}-20x}{9}=\frac{25}{9}
Divide both sides by 9.
x^{2}-\frac{20}{9}x=\frac{25}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{20}{9}x+\left(-\frac{10}{9}\right)^{2}=\frac{25}{9}+\left(-\frac{10}{9}\right)^{2}
Divide -\frac{20}{9}, the coefficient of the x term, by 2 to get -\frac{10}{9}. Then add the square of -\frac{10}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{20}{9}x+\frac{100}{81}=\frac{25}{9}+\frac{100}{81}
Square -\frac{10}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{20}{9}x+\frac{100}{81}=\frac{325}{81}
Add \frac{25}{9} to \frac{100}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{10}{9}\right)^{2}=\frac{325}{81}
Factor x^{2}-\frac{20}{9}x+\frac{100}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{10}{9}\right)^{2}}=\sqrt{\frac{325}{81}}
Take the square root of both sides of the equation.
x-\frac{10}{9}=\frac{5\sqrt{13}}{9} x-\frac{10}{9}=-\frac{5\sqrt{13}}{9}
Simplify.
x=\frac{5\sqrt{13}+10}{9} x=\frac{10-5\sqrt{13}}{9}
Add \frac{10}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}